Skip to main content
Log in

A direct method for genetically transforming rice seeds modelled with FHVB2, a suppressor of RNAi

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is a novel method of gene regulation and one of the potent host defense mechanisms against viruses. It however acts as a deterrent in transgene-technology by constraining the expression of the introduced gene. The virus-encoded suppressors have the ability to restrict host RNAi to promote pathogenicity. They thus have tremendous potential to ameliorate low transgene expression and have important applications in the biofarming sector. Unfortunately the suppressors severally reduce plant regeneration potentials in the standard procedures. In this study, we report a simple, fast and efficient method for in planta transformation of rice seeds that can be used for over-expressing FHVB2, a well-characterized suppressor of RNAi. The protocol involves agro-inoculation of embryos without vacuum infiltration or injury followed by their growth ex vitro. Following transformation the transgene integration, expression and stable inheritance was confirmed. We observed that the FHVB2 transgenic survival in this methodology was 15-fold higher compared to that in available callus-based methods. The protocol has the potential to be extended for transforming rice with any gene as exemplified by the use of control constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FHVB2:

B2 protein of Flock House Virus

References

  • Alvarez ML, Pinyerd HL, Topal E, Cardineau GA (2008) P19-dependent and P19-independent reversion of F1-V gene silencing in tomato. Plant Mol Biol 68(1–2):61–79

    Article  CAS  PubMed  Google Scholar 

  • Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A 95(22):13079–13084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17(22):6739–6746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang SS, Park SK, Kim BC, Kang BJ, Kim DU, Nam HG (1994) Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. The Plant J 5(4):551–558

    Article  CAS  Google Scholar 

  • Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18(10):1179–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho S, Chung Y, Park S, Shin J, Kwon H, Kang K (1998) Efficient transformation of Korean rice cultivars (Oryza sativa L.) mediated by Agrobacterium tumefaciens. J Plant Biol 41(4):262–268

    Article  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  • Chumakov M, Rozhok N, Velikov V, Tyrnov V, Volokhina I (2006) Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russ J Genet 42(8):893–897

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Fengler KA, Yu I-c, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci U S A 97(16):9323–9328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong J, Teng W, Buchholz WG, Hall TC (1996) Agrobacterium-mediated transformation of Javanica rice. Mol Breed 2(3):267–276

    Article  CAS  Google Scholar 

  • Dunoyer P, Lecellier CH, Parizotto EA, Himber C, Voinnet O (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16(5):1235–1250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans DA, Sharp WR (1986) Applications of somaclonal variation. Nat Biotechnol 4(6):528–532

    Article  Google Scholar 

  • Feldmann KA, Marks D (1987) Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208(1):1–9

    Article  CAS  Google Scholar 

  • Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler J-L (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 7(16554838):590–597

    Article  CAS  PubMed  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418(6894):244–251

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4(6):226–231

    Article  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35(1–2):205–218

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22(6):561–570

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan A, Shilpha J, Pandian SK, Ramesh M (2012) Agrobacterium-mediated transformation of indica rice cv. ADT 43. Plant Cell Tiss Organ Cult 109(1):153–165

    Article  CAS  Google Scholar 

  • Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95(4):461–470

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4(2):205–217

    Article  CAS  PubMed  Google Scholar 

  • Katavic V, Haughn GW, Reed D, Martin M, Kunst L (1994) In planta transformation of Arabidopsis thaliana. Mol Gen Genet 245(3):363–370

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Shioiri H, Nogawa M, Nozue M, Matsumoto D, Wada A, Saiki Y, Kiguchi K (2004) In planta transformation of kenaf plants (Hibiscus cannabinus var. aokawa No. 3) by Agrobacterium tumefaciens. J Biosci Bioeng 98(2):136–139

    Article  CAS  PubMed  Google Scholar 

  • Lacombe S, Bangratz M, Vignols F, Brugidou C (2010) The rice yellow mottle virus P1 protein exhibits dual functions to suppress and activate gene silencing. Plant J 61(3):371–382

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Scowcroft W (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theoretic Appl Genet 60(4):197–214

    Article  CAS  Google Scholar 

  • Li WX, Ding SW (2001) Viral suppressors of RNA silencing. Curr Opin Biotechnol 12(2):150–154

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296(5571):1319–1321

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Park E, von Arnim AG, Nebenfuhr A (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep 28(7):1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M (2005) The structure of the flock house virus B2 protein, a viral suppressor of RNA interference, shows a novel mode of double-stranded RNA recognition. EMBO Rep 6(12):1149–1155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mallory AC, Parks G, Endres MW, Baulcombe D, Bowman LH, Pruss GJ, Vance VB (2002) The amplicon-plus system for high-level expression of transgenes in plants. Nat Biotechnol 20(6):622–625

    Article  CAS  PubMed  Google Scholar 

  • Moissiard G, Voinnet O (2004) Viral suppression of RNA silencing in plants. Mol Plant Pathol 5(1):71–82

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4):279–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura A, Ashikari M, Lin S, Takashi T, Angeles ER, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci U S A 102(33):11940–11944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman J, Karjee S, Mukherjee SK (2012) MYMIV-AC2, a geminiviral RNAi suppressor protein, has potential to increase the transgene expression. Appl Biochem Biotechnol 167(4):758–775

    Article  CAS  PubMed  Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep 15(10):727–730

    Article  CAS  PubMed  Google Scholar 

  • Roth BM, Pruss GJ, Vance VB (2004) Plant viral suppressors of RNA silencing. Virus Res 102(1):97–108. doi:10.1016/j.virusres.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7(1):49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106(8):1396–1408

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Scholl R, Keathley D, Baribault T (1981) Enhancement of root formation and fertility in shoots regenerated from anther-and seedling-derived callus cultures of Arabidopsis thaliana. Zeitschrift für Pflanzenphysiologie 104(3):225–231

    Article  CAS  Google Scholar 

  • Scholthof HB (2007) Heterologous expression of viral RNA interference suppressors: RISC management. Plant Physiol 145(4):1110–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siddiqui SA, Sarmiento C, Kiisma M, Koivumäki S, Lemmetty A, Truve E, Lehto K (2008a) Effects of viral silencing suppressors on tobacco ringspot virus infection in two Nicotiana species. J Gen Virol 89(6):1502–1508

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui SA, Sarmiento C, Truve E, Lehto H, Lehto K (2008b) Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum. Mol Plant Microbe Interact 21(2):178–187

    Article  CAS  PubMed  Google Scholar 

  • Singh DK, Karjee S, Malik PS, Islam N, Mukherjee SK (2007) DNA replication and pathogenecity of MYMIV. In: Méndez-Vilas A (ed) Communicating current research and educational tpics and trends in applied microbiology., pp 155–162

    Google Scholar 

  • Singh G, Popli S, Hari Y, Malhotra P, Mukherjee S, Bhatnagar RK (2009) Suppression of RNA silencing by flock house virus B2 protein is mediated through its interaction with the PAZ domain of Dicer. FASEB J 23(6):1845–1857

    Article  CAS  PubMed  Google Scholar 

  • Sunter G, Sunter JL, Bisaro DM (2001) Plants expressing tomato golden mosaic virus AL2 or beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Supartana P, Shimizu T, Shioiri H, Nogawa M, Nozue M, Kojima M (2005) Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J Biosci Bioeng 100(4):391–397

    Article  CAS  PubMed  Google Scholar 

  • Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102(3):162–170

    Article  CAS  PubMed  Google Scholar 

  • Tijsterman M, Ketting RF, Plasterk RH (2002) The genetics of RNA silencing. Annu Rev Genet 36:489–519

    Article  CAS  PubMed  Google Scholar 

  • Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15(1):16–21

    Article  CAS  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47(6):969–976

    Article  CAS  PubMed  Google Scholar 

  • Us-Camas R, Rivera-Solís G, Duarte-Aké F, De-la-Peña C (2014) In vitro culture: an epigenetic challenge for plants. Plant Cell Tiss Organ Cult 118:1–15

    Article  Google Scholar 

  • Van den Bulk R, Löffler H, Lindhout W, Koornneef M (1990) Somaclonal variation in tomato: effect of explant source and a comparison with chemical mutagenesis. Theoretic Appl Genet 80(6):817–825

    Article  Google Scholar 

  • Vaucheret H, Beclin C, Fagard M (2001) Post-transcriptional gene silencing in plants. J Cell Sci 114(17):3083–3091

    CAS  PubMed  Google Scholar 

  • Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389(6651):553

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96(24):14147–14152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33(5):949–956. doi:10.1046/j.1365-313X.2003.01676.x

    Article  CAS  PubMed  Google Scholar 

  • Wang X-H, Aliyari R, Li W-X, Li H-W, Kim K, Carthew R, Atkinson P, Ding S-W (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312(6556799):452–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wassenegger M, Pelissier T (1998) A model for RNA-mediated gene silencing in higher plants. Plant Mol Biol 37(2):349–362

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Zhou DX, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35(3):418–427. doi:10.1046/j.1365-313X.2003.01808.x

    Article  CAS  PubMed  Google Scholar 

  • Yara A, Otani M, Kusumi K, Matsuda O, Shimada T, Iba K (2001) Production of transgenic japonica rice (Oryza sativa) cultivar, Taichung 65, by the Agrobacterium-mediated method. Plant Biotechnol 18(4):305–310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Sunil K. Mukherjee and Dr. Raj K. Bhatnagar for providing the suppressor gene constructs. The authors would like to thank Prof. Sudhir K Sopory for critically reading the manuscript. SSD acknowledges the fellowship received from CSIR, India. The research was supported by financial grants received from the Department of Biotechnology, Government of India.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeti Sanan-Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Representative photographs of the various stages of transformation of FHVB2 (JPEG 97 kb)

11240_2014_604_MOESM2_ESM.jpg

Representative photographs to show the agro-envelope around rice seeds inoculated with Agrobacterium (EHA105) cells at a OD600 = 1.0 and b OD600 = 0.1 with 1 day and 3 days of co-cultivation period respectively (JPEG 73 kb)

11240_2014_604_MOESM3_ESM.jpg

Representative photographs to show the morphological abnormalities in rice seedlings transformed with FHVB2. a FHVB2 transformed seedling as grown on MS selection plate. Blue arrows indicate the albino seedlings, Red arrows indicate seedlings with slow growth and black arrows indicate seedlings with defective morphology. b A large proportion of seedlings transformed with FHVB2 are albino and these could not grow to maturity. c Control plants transformed with pCAMBIA1300-GUS showed normal physiology (JPEG 97 kb)

11240_2014_604_MOESM4_ESM.jpg

Genomic DNA PCR with virG gene to confirm the absence of Agrobacterium in different primary transformants growing on selection medium. Agarose gel electrophoresis of PCR amplified DNA from leaf tissue of the transformed rice lines. The virG gene amplification should result in a band of 503 bp. Lane 1. 1 kb DNA ladder (Fermentas); Lane 2-11, represents different independently transformed lines; Lane 12, negative: represents untransformed control wild type (WT) plant; Lane 13, positive: represents PCR control with 20 ng of plasmid as template (JPEG 54 kb)

11240_2014_604_MOESM5_ESM.jpg

Southern blot analysis of T1 progenies of the FHVB2 transgenics. 20 μg of BamH1 digested DNA from leaves of different plants was blotted and probed with 32P labelled FHVB2 gene. (A) Lanes 1-5. different transgenic plants; Lane 6. Wild type (WT) plant; Lanes 7 template probe (B) Lane 1-7 different transgenic plants (JPEG 132 kb)

11240_2014_604_MOESM6_ESM.jpg

RT-PCR to confirm the presence of FHVB2 transgene in the T1 generation plants. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis of FHVB2 gene expression in different transgenic rice lines using the primers amplifying the region of FHVB2, GUS and Β-ACTIN genes. cDNA was prepared using 50 U of Super ScriptTM II reverse transcriptase (Invitrogen). Lanes 1-11: transgenic rice lines; Lane 12: negative: represents wild type (WT) seedlings; Lane 10: positive: represents 20 ng of plasmid used as template (JPEG 42 kb)

Genomic DNA PCR with virG gene to confirm the absence of Agrobacterium in the T1 generation plants (JPEG 33 kb)

Representative photograph of regeneration from rice callus over-expressing MYMIV-AC2 (JPEG 32 kb)

Supplementary material 9 (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.S., Sanan-Mishra, N. A direct method for genetically transforming rice seeds modelled with FHVB2, a suppressor of RNAi. Plant Cell Tiss Organ Cult 120, 277–289 (2015). https://doi.org/10.1007/s11240-014-0604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0604-3

Keywords

Navigation