Skip to main content
Log in

A urea-type cytokinin, 2-Cl-PBU, stimulates adventitious bud formation of Eucalyptus urophylla by repressing transcription of rboh1 gene

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient regeneration protocol is the prerequisite of genetic modification of eucalyptus. However, adventitious bud differentiation from calli of eucalyptus is difficult because of rapid callus browning. By comparing three cytokinins in tissue culture of Eucalyptus urophylla, it was found that N-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea (2-Cl-PBU), a home-made urea-type cytokinin, induced more green callus than N-phenyl-N′-(1,2,3-thiadiazol-5-yl)urea (thidiazuron, TDZ) or 6-benzylaminopurine (BAP). Only green calli were regarded as organogenic calli because they were the only one capable of differentiating adventitious buds in subsequent procedures. Six physiological indexes of green calli, including the contents of hydrogen peroxide, superoxide anion radicals, cellulose and lignin, and the activities of peroxidase and superoxide dismutase, were higher than that of white calli. Furthermore, the transcription levels of four respiratory burst oxidase homolog (rboh) genes declined significantly in organogenic green calli, especially that of EgrRboh01 (rboh1). Among the three treatments by 2-Cl-PBU, BAP and a combination of 2-Cl-PBU and BAP, the primary callus induced by BAP showed the highest rboh1 transcription level, 12.7–20 times higher than that by 2-Cl-PBU or by the combination of BAP and 2-Cl-PBU. The lowest rboh1 transcription level was observed in the calli induced by 2-Cl-PBU. The results indicated that 2-Cl-PBU restrained callus browning and promoted adventitious bud differentiation of E. urophylla by repressing the transcription of rboh1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arruda SCC, Souza GM, Almeida M, Gonçalves AN (2000) Anatomical and biochemical characterization of the calcium effect on Eucalyptus urophylla callus morphogenesis in vitro. Plant Cell, Tissue Organ Cult 63:143–154

    Article  CAS  Google Scholar 

  • Bakalovic N, Passardi F, Ioannidis V, Cosio C, Penel C, Falquet L, Dunan C (2006) PeroxiBase: a class III plant peroxidase database. Phytochemistry 67:534–539

    Article  PubMed  CAS  Google Scholar 

  • Bonfill M, Cusidó RM, Palazón J, Canut E, Piñol MT, Morales C (2003) Relationship between peroxidase activity and organogenesis in Panax ginseng calluses. Plant Cell, Tissue Organ Cult 73:37–41

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 71:248–254

    Article  Google Scholar 

  • Carra A, De Pasquale F, Ricci A, Carimi F (2006) Diphenylurea derivatives induce somatic embryogenesis in Citrus. Plant Cell, Tissue Organ Cult 87:41–48

    Article  CAS  Google Scholar 

  • de Oliveira LA, Breton MC, Bastolla FM, Silva CS, Margis R, Frazzon J, Pasquali G (2012) Reference Genes for the normalization of gene expression in Eucalyptus species. Plant Cell Physiol 53:405–422

    Article  PubMed  Google Scholar 

  • Devi PS, Satyanarayana B, Arundhati A, Rao TR (2013) Activity of antioxidant enzymes and secondary metabolites during in vitro regeneration of Sterculia urens. Biol Plant 57:778–782

    Article  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torresk MA, Linstead P, Costa S, Brownlee C, Jonesk JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • GIT Forestry (2008) Cultivated eucalyptus global map 2008. http://www.git-forestry.com

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Girijashankar V (2011) Genetic transformation of Eucalyptus. Physiol Mol Biol Plants 17:9–23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuć J (1982) Association of enhanced peroxidase activity with induced systematic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7:766–768

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang ZC, Zeng FH, Lu XY (2010) Efficient regeneration of Eucalyptus urophylla from seedling-derived hypocotyls. Biol Plant 54:131–134

    Article  CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of 3 submersed aquatic angiosperms: effect of heavy-metals. Aquat Bot 11:67–77

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2002a) Involvement of plasma membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215:1022–1030

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2002b) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and upregulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  PubMed  CAS  Google Scholar 

  • Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27:605–615

    Article  PubMed  Google Scholar 

  • Li ZF, Luo FY (2001) Synthesis and characterization of N-substituted-phenyl-N′-[6-(2-chlorobenzothiazol)-yl] urea. Chem Res Appl 13:80–82

    CAS  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667

    Article  PubMed  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Penna S (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell, Tissue Organ Cult 102:17–25

    Article  Google Scholar 

  • Mamaghani MS, Assareh MH, Omidi M, Matinizadeh M, Ghamari-Zare A, Shahrzad S, Forootan M (2009) The effect of thidiazuron level on in vitro regeneration type and peroxidase profile in Eucalyptus microtheca F. Muell. Plant Growth Regul 59:199–205

    Article  Google Scholar 

  • Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008) Glutathione peroxidase family—an evolutionary overview. FEBS J 275:3959–3970

    Article  PubMed  CAS  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  PubMed  CAS  Google Scholar 

  • Montiel J, Arthikala M, Quinto C (2013) Phaseolus vulgaris RbohB functions in lateral root development. Plant Signal Behav 8:144–146

    Article  CAS  Google Scholar 

  • Nakanomyo I, Kost B, Chua NH, Fukuda H (2002) Preferential and asymmetrical accumulation of a Rac small GTPase mRNA in differentiating xylem cells of Zinnia elegans. Plant Cell Physiol 43:1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Navarro M, Ayax C, Martinez Y, Laur J, Kayal WE, Marque C, Teulières C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Iwabuchi M (2001) Mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant Cell Physiol 42:286–291

    Article  PubMed  CAS  Google Scholar 

  • Oliva M, Theiler G, Zamocky M, Koua D, Margis-Pinheiro M, Passardi F, Dunand C (2009) PeroxiBase: a powerful tool to collect and analyse peroxidase sequences from Viridiplantae. J Exp Bot 60:453–459

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:1360–1385

    Article  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiroe M, Ioannidisf V, Penela C, Falquetf L, Dunanda C (2007a) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Zamocky M, Favet J, Jakopitsch C, Penel C, Obinger C, Dunand C (2007b) Phylogenetic distribution of catalase-peroxidases: are there patches of order in chaos? Gene 397:101–113

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl Acids Res 30:e36. doi:10.1093/nar/30.9.e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 119:849–858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rajeswari V, Paliwal K (2008) Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albizia odoratissima L.f. (Benth). Acta Physiol Plant 30:825–832

    Article  CAS  Google Scholar 

  • Ricci A, Bertoletti C (2009) Urea derivatives on the move: cytokinin-like activity and adventitious rooting enhancement depend on chemical structure. Plant Biol 11:262–272

    Article  PubMed  CAS  Google Scholar 

  • Ricci A, Carra A, Torelli A, Maggiali CA, Vicini P, Zani F, Branca C (2001) Cytokinin-like activity of N′-substituted N-phenylureas. Plant Growth Regul 34:167–172

    Article  CAS  Google Scholar 

  • Rodríguez AA, Ramiro Lascano H, Bustos D, Taleisnik E (2007) Salinity-induced decrease in NADPH oxidase activity in the maize leaf blade elongation zone. J Plant Physiol 164:223–230

    Article  PubMed  Google Scholar 

  • Rolli E, Incerti M, Brunoni F, Vicini P, Ricci A (2012) Structure–activity relationships of N-phenyl-N′-benzothiazol-6-ylurea synthetic derivatives: cytokinin-like activity and adventitious rooting enhancement. Phytochemistry 74:159–165

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tanaka T, Izawa S, Inoue Y (2005) GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem 280:42078–42087

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ (2005) Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. Plant Physiol Biochem 43:760–769

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Gu Q, Zhu MY (2003) The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Sci 165:701–707

    Article  CAS  Google Scholar 

  • Torelli A, Borinato M, Francia S, Carra A, Ricci A, Branca C (2006) Adeninic and ureidic cytokinins: primary response events in in vitro tomato caulogenesis. Plant Sci 171:60–73

    Article  CAS  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  PubMed  CAS  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57

    CAS  Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  PubMed  CAS  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zamocky M (2004) Phylogenetic relationships in class I of the superfamily of bacterial, fungal, and plant peroxidases. Eur J Biochem 271:3297–3309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Rongchen Wang for useful discussion and correction of the manuscript. This research was supported by the National Spark Plan of China (2011GA780057, 2012GA780019), The Natural Science Foundation (10452404801004328, S2012010008737, S2013040014690) of Guangdong province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhua Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Ouyang, L., Li, Z. et al. A urea-type cytokinin, 2-Cl-PBU, stimulates adventitious bud formation of Eucalyptus urophylla by repressing transcription of rboh1 gene. Plant Cell Tiss Organ Cult 119, 359–368 (2014). https://doi.org/10.1007/s11240-014-0539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0539-8

Keywords

Navigation