Skip to main content
Log in

Mutagenic effects of heavy-ion beam irradiation on in vitro nodal segments of Artemisia annua L.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Artemisia annua L. is a commercial source of artemisinin. Nevertheless, artemisinin content within the plant is relatively low and varies depending on genotype and environment. To broaden the genetic variability, the mutation effect of 12C-ion beam irradiation on A. annua was examined. Irradiation at 2.5 Gy had a slight lethal effect to nodal segments while a noticeable lethal effect was observed at 5 and 10 Gy. Furthermore, at higher doses (20 and 50 Gy), a severe lethal effect was observed. Mutations at the DNA level of axillary bud-derived shoots were performed by RAPD. The mutation frequency at 10 Gy was about 1.7 and 2.1 times higher than that at 2.5 and 5 Gy, respectively. After growth and artemisinin production observation of 72 irradiated mutants, around 14 and 7 % of them showed higher artemisinin content and artemisinin yield compared to the controls, respectively. The highest artemisinin content in a mutant was 1.43 % DW, which was 3.2-fold higher than the original wild type. Additionally, the highest artemisinin yield in mutants was 3.68 mg/plant, which was around 1.4-fold higher than in the wild type. Moreover, irradiated mutants exhibited antibacterial activity against S. aureus, but the wild types did not. This study presents an effective application of heavy ion beam irradiation to create variations and improve artemisinin production in A. annua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amano J, Kuwayama S, Mizuta Y, Oomiya T, Nakamura T, Nakano M (2007) Early identification of intra- and intergeneric hybrids among Colchicaceous ornamentals, Gloriosa spp., Littonia modesta Hook. and Sandersonia aurantiaca Hook., by flow cytometry and random amplified polymorphic DNA analysis. J Japan Soc Hort Sci 76:73–78

    Article  CAS  Google Scholar 

  • Banyai W, Mii M, Supaibulwatana K (2011) Enhancement of artemisinin content and biomass in Artemisia annua by exogenous GA3 treatment. Plant Growth Regul 63:45–54

    Article  CAS  Google Scholar 

  • Baraldi R, Isacchi B, Predieri S, Marconi G, Vincieri FF, Bilia AR (2008) Distribution of artemisinin and bioactive flavonoids from Artemisia annua L. during plant growth. Biochem Syst Ecol 36:340–348

    Article  CAS  Google Scholar 

  • Chen YF, Chen W, Huang X, Hu X, Zhao JT, Gong Q, Li XJ, Huang XL (2013) Fusarium wilt-resistant lines of Brazil banana (Musa spp., AAA) obtained by EMS-induced mutation in a micro-cross-section cultural system. Plant Pathol 62:112–119

    Article  CAS  Google Scholar 

  • Datta SK, Misra P, Mandal AKA (2005) In vitro mutagenesis—a quick method for establishment of solid mutant in chrysanthemum. Curr Sci 88:155–158

    CAS  Google Scholar 

  • Delabays N, Simonnet X, Gaudin M (2001) The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. Current Med Chem 8:1795–1801

    Article  CAS  Google Scholar 

  • Dong X, Li W (2012) Biological features of an early-maturity mutant of sweet sorghum induced by carbon ions irradiation and its genetic polymorphism. Adv Space Res 50:496–501

    Article  CAS  Google Scholar 

  • Ferreira JFS, Janick J (1996) Distribution of artemisinin in Artemisia annua. In: Janick J (ed) Progress in new crops. ASHS Press, Arlington, pp 579–584

    Google Scholar 

  • Ferreira JFS, Laughlin JC, Delabays N, de Magalhães PM (2005) Cultivation and genetics of Artemisia annua L for increased production of the antimalarial artemisinin. Plant Genet Resour 3:206–229

    Article  CAS  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and maker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci USA 109:19166–19171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kanai T, Kohno T, Minohara S, Sudou M, Takada E, Soga F, Kawachi K, Fukumura A (1993) Dosimetry and measured differential W values of air for heavy ions. Radiat Res 135:293–301

    Article  PubMed  CAS  Google Scholar 

  • Kazama Y, Hirano T, Saito H, Liu Y, Ohbu S, Hayashi Y, Abe T (2011) Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol 11:161. doi:10.1186/1471-2229-11-161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kazama Y, Fujiwara MT, Takehisa H, Ohbu S, Saito H, Ichida H, Hayashi Y, Abe T (2013) Characterization of a heavy-ion induced white flower mutant of allotetraploid Nicotiana tabacum. Plant Cell Rep 32:11–19

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Saito Y, Ryto H, Fukunishi N, Abe T, Tanaka H, Tsujimoto H (2009) Effect of heavy ion beams on chromosomes of common wheat, Triticum aestivum. Mutat Res 669:63–66

    Article  PubMed  CAS  Google Scholar 

  • Koobkokkruad T, Chochai A, Kirdmanee C, De-Eknamkul W (2008) Effects of low-dose gamma irradiation on artemisinin content and amorpha-4,11-diene synthase activity in Artemisia annua L. Int J Radiat Biol 84:878–884

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Gupta SK, Singh P, Bajpai P, Gupta MM, Singh D, Gupta AK, Ram G, Shasany AK, Sharma S (2004) High yields of artemisinin by multi-harvest of Artemisia annua crops. Ind Crop Prod 19:77–90

    Article  CAS  Google Scholar 

  • Lu G, Zhang X, Zou Y, Zou Q, Xiang X, Cao J (2007) Effect of radiation on regeneration of Chinese narcissus and analysis of genetic variation with AFLP and RAPD markers. Plant Cell, Tissue Organ Cult 88:319–327

    Article  CAS  Google Scholar 

  • Magori S, Tanaka A, Kawaguchi M (2010) Physically induced mutation: ion beam mutagenesis. In: Meksem K, Kahl K (eds) The Handbook of plant mutation screening: mining of natural and induced. WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, pp 3–16

    Google Scholar 

  • Mandal AKA, Chakrabarty D, Datta SK (2000) Application of in vitro techniques in mutation breeding of chrysanthemum. Plant Cell, Tissue Organ Cult 60:33–38

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-essays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano M, Amano J, Watanabe Y, Nomizu T, Suzuki M, Mizunashi K, Mori S, Kuwayama S, Han D, Saito H, Ryuto H, Fukunishi N, Abe T (2010) Morphological variation in Tricyrtishirta plants regenerated from heavy ion beam-irradiated embryogenic calluses. Plant Biotechnol 27:155–160

    Article  Google Scholar 

  • Novak FJ, Brunner H (1992) Plant breeding: induced mutation technology for crop improvement. IAEA Bull 4:25–33

    Google Scholar 

  • Okamura M, Yasuno N, Ohtsuka M, Tanaka A, Shikazono N, Hase Y (2003) Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl Instr Methods Phys Res B 206:574–578

    Article  CAS  Google Scholar 

  • Othman M, Loh HS, Wiart C, Khoo TJ, Lim KH, Ting KN (2011) Optimal methods for evaluating antimicrobial activities from plant extracts. J Microbiol Methods 84:161–166

    Article  PubMed  CAS  Google Scholar 

  • Roux NS, Dolezel J, Swennen R, Zapata-Arias FJ (2001) Effectiveness of three micropropagation techniques to dissociate cytochimeras in Musa spp. Plant Cell, Tissue Organ Cult 66:189–197

    Article  Google Scholar 

  • Sala CA, Bulos M, Echarte M, Whitt SR, Ascenzi R (2008) Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theor Appl Genet 118:105–112

    Article  PubMed  CAS  Google Scholar 

  • Sangsiri C, Sorajjapinun W, Srinives P (2005) Gamma radiation induced mutation in mungbean. Scienceasia 31:251–255

    Article  Google Scholar 

  • Shi X, Li K, Nie Y, Zhang G (2006) Biochemistry and genetic analysis of bioeffects of low energy N+ Implantation and Y-radiation on Arabidopsis thaliana. Front Biol China 1:41–45

    Article  Google Scholar 

  • Shikazono N, Tanaka A, Kitayama S, Watanabe H, Tano S (2002) LET dependence of lethality in Arabidopsis thaliana irradiated by heavy ions. Radiat Environ Biophys 41:159–162

    Article  PubMed  CAS  Google Scholar 

  • Shikazono N, Yokota Y, Kitamura S, Suzuki C, Watanabe H, Tano S, Tanaka A (2003) Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 163:1449–1455

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shikazono N, Suzuki C, Kitamura C, Watanabe H, Tano S, Tanaka A (2005) Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J Exp Bot 56:587–596

    Article  PubMed  CAS  Google Scholar 

  • Shirao T, Ueno K, Abe T, Matsuyama T (2013) Development of DNA markers for identifying chrysanthemum cultivars generated by ion-beam irradiation. Mol Breed 31:729–735

    Article  CAS  Google Scholar 

  • Takahashi M, Kohama S, Kondo K, Hakata M, Hase Y, Shikazono N, Tanaka A, Morikawa H (2005) Effects of ion beam irradiation on the regeneration and morphology of Ficus thunbergii Maxim. Plant Biotechnol 22:63–67

    Article  CAS  Google Scholar 

  • Takahashi M, Kohama S, Shigeto J, Hase Y, Tanaka A, Morikawa H (2012) Mutants of Ficuspumila produced by ion beam irradiation with an improved ability to uptake and assimilate atmospheric nitrogen dioxide. Int J Phytoremediat 14:275–281

    Article  CAS  Google Scholar 

  • Takano N, Yamamoto M, Takahash Y, Teranishi M, Yamaguchi H, Sakamoto AN, Hase Y, Fujisawa H, Wu J, Matsumoto T, Toki S, Hidema J (2013) Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams. J Radiat Res 54:1–12

    Article  Google Scholar 

  • Tanaka A, Shikazono N, Yokota Y, Watanabe H, Tano S (1997) Effects of heavy ions on the germination and survival of Arabiopsis thaliana. Int J Radiat Biol 72:121–127

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  PubMed  CAS  Google Scholar 

  • Verma RK, Chauhan A, Verma RS, Gupta AK (2011) Influence of planting date on growth, artemisinin yield, seed and oil yield of Artemisia annua L. under sub temperate climatic conditions. Ind Crop Prod 34:860–864

    Article  CAS  Google Scholar 

  • WHO (2001) Antimalarial drug combination therapy: report of a technical consultation. World Health Organization, Geneva

    Google Scholar 

  • WHO (2012) World malaria report 2012. World Health Organization, Geneva

    Google Scholar 

  • Wu L, Yu Z (2001) Radiobiological effects of a low-energy ion beam on wheat. Radiat Environ Biophys 40:53–57

    Article  PubMed  CAS  Google Scholar 

  • Wu LD, Hou SW, Qian PP, Sun LD, Zhang YC, Li WJ (2009) Flower color chimera and abnormal leaf mutants induced by 12C6+ heavy ions in Salvia splendens Ker-Gawl. Sci Hort 121:462–467

  • Yamaguchi H, Shimizu A, Hase Y, Degi K, Tanaka A, Morishita T (2009) Mutation induction with ion beam irradiation of lateral buds of chrysanthemum and analysis of chimeric structure of induced mutants. Euphytica 165:97–103

    Article  Google Scholar 

  • Yang H, Schmidt H (1994) Selection of a mutant from adventitious shoots formed in X ray treated cherry leaves and differentiation of standard and mutant with RAPDs. Euphytica 77:89–92

    Article  Google Scholar 

  • Yokota Y, Yamada S, Hase Y, Shikazono N, Narumi I, Tanaka A, Inoue M (2007) Initial yields of DNA double-strand breaks and DNA fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions. Radiat Res 167:94–101

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Ye HC, Li GF (2006) Effect of development stage on the artemisinin content and the sequence characterized amplified region (SCAR) marker of high-artemisinin yielding strains of Artemisia annua L. J Integr Plant Biol 48:1054–1062

    Article  CAS  Google Scholar 

  • Zhou LB, Li WJ, Yu LX, Li P, Li Q, Ma S, Dong XC, Zhou GM, Leloup C (2006) Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Int J Radiat Biol 82:473–481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Office of the Higher Education Commission, Thailand for their support by providing support under the Strategic Scholarships for Frontier Research Network program for the Joint Ph.D. Program Thai Doctoral degree. We owe our sincere gratitude to the Graduate School of Science and Technology, Niigata University, Japan for financial assistance under the Global Circus Project during research at Niigata University, Japan. Thanks also due to Faculty of Science, Mahidol University, Thailand for facilities and research grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masaru Nakano or Kanyaratt Supaibulwatana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inthima, P., Otani, M., Hirano, T. et al. Mutagenic effects of heavy-ion beam irradiation on in vitro nodal segments of Artemisia annua L.. Plant Cell Tiss Organ Cult 119, 131–139 (2014). https://doi.org/10.1007/s11240-014-0519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0519-z

Keywords

Navigation