Skip to main content

Advertisement

Log in

Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

MicroRNA (miRNA)-guided post-transcriptional regulation is an important mechanism of gene regulation during multiple biological processes including response to abiotic stresses. Foxtail millet is a model crop, which is genetically closely related to several bioenergy grasses and also known for its potential abiotic stress tolerance. Hence deciphering the role of miRNAs in regulating stress-responsive mechanism would enable imparting durable stress tolerance in both millets and bioenergy grasses. Considering this, a comprehensive genome-wide in silico analysis was performed in foxtail millet which identified 355 mature miRNAs along with their secondary structure as well as corresponding targets. Predicted miRNA targets were found to encode various DNA binding proteins, transcription factors or important functional enzymes, which could be the crucial regulators in plant abiotic stress responses. All the 355 miRNAs were physically mapped onto the foxtail millet genome and in silico tissue-specific expression for these miRNAs were studied. Comparative mapping of the 355 miRNAs between foxtail millet and other related grass species would assist miRNA studies in these genetically closely-related plants. Expression profiling was performed for eight candidate miRNAs under diverse abiotic stresses in foxtail millet, which unravelled the putative involvement of these miRNAs in stress tolerance. With an aim of providing the generated miRNA marker information to the global scientific community, a foxtail millet MiRNA Database (FmMiRNADb: http://59.163.192.91/FmMiRNADb/index.html) has also been constructed. Overall, the present study provides novel insights onto the role of miRNAs in abiotic stress tolerance and would promisingly expedite research on post-transcriptional regulation of stress-related genes in millets and bioenergy grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Article  CAS  PubMed  Google Scholar 

  • Bonnet E, Van de Peer Y, Rouzé P (2006) The small RNA world of plants. New Phytol 171:451–468

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey J, Weretilnyk V (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 158–1249

    Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem–loop RT-PCR. Nucl Acids Res 33:e179

    Article  PubMed Central  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucl Acids Res 39:W155–W159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das A, Mondal TK (2010) Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis). Am J Plant Sci 1:77–86

    Article  CAS  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:D1178–D1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte f. Chemie 125:167–188

    Article  CAS  Google Scholar 

  • Jiao Y, Song W, Zhang M, Lai J (2011) Identification of novel maize miRNAs by measuring the precision of precursor processing. BMC Plant Biol 11:141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2011) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2011.05.001

    PubMed Central  PubMed  Google Scholar 

  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucl Acids Res 39:D152–D157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar K, Muthamilarasan M, Prasad M (2013) Reference genes for quantitative real-time PCR analysis in the model plant foxtail millet (Setaria italica L.) subjected to abiotic stress conditions. Plant Cell Tiss Organ Cult 115:13–22

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lata C, Prasad M (2013) Setaria genome sequencing: an overview. J Plant Biochem Biotechnol 22:257–260

    Article  CAS  Google Scholar 

  • Lata C, Bhutty S, Bahadur RP, Majee M, Prasad M (2011) Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet, a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343

    Article  PubMed  Google Scholar 

  • Liu Q (2012) Novel miRNAs in the control of arsenite levels in rice. Funct Integr Genomics 12:649–658

    Article  CAS  PubMed  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of auxin response factor10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117

    Article  PubMed  Google Scholar 

  • Lu C, Jeong DH, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher SR, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers BC, Green PJ (2008a) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA 105:4951–4956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008b) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC domain targets is required for proper formation and separation of adjacent embryonic, vegetative and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis auxin response factor17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra AK, Muthamilarasan M, Parida SK, Prasad M (2014) Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PLoS One 9:e86852

    Article  PubMed Central  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2013) Cutting-edge research on plant miRNAs. Curr Sci 104:287–289

    Google Scholar 

  • Muthamilarasan M, Theriappan P, Prasad M (2013) Recent advances in crop genomics for ensuring food security. Curr Sci 105:155–158

    Google Scholar 

  • Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tiss Organ Cult 105:233–242

    Article  CAS  Google Scholar 

  • Phillips J, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Mandal SN, Venkata Suersh B, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS One 8:e64594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Gene Dev 16:1616–1626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  CAS  PubMed  Google Scholar 

  • Youens-Clark K, Faga B, Yap IV, Stein L, Ware D (2009) CMap 1.01: a comparative mapping application for the Internet. Bioinformatics 25:3040–3042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang B, Pan X, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006b) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006c) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1779:780–788

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grateful thanks are due to Council of Scientific and Industrial Research and University Grants Commission, Government of India for providing CSIR-SRF and UGC-JRF to Ms. Amita Yadav and Mr. Mehanathan Muthamilarasan, respectively. Authors work in this area is supported by the core grant of National Institute of Plant Genome Research, New Delhi, India. Assistance of Dr. Debasis Chattopadhyay, Scientist, NIPGR for providing server facility is greatly appreciated. Computational resources under BTISNET program (DISC facility) are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad.

Additional information

Yusuf Khan, Amita Yadav and Venkata Suresh Bonthala have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2014_480_MOESM1_ESM.pdf

Supplementary Fig. 1. Secondary structure of the miRNAs in Setaria italica. The structures are arranged family-wise. The red colored sequences represent the mature miRNA. (PDF 6777 kb)

Supplementary material 2 (PDF 158 kb)

11240_2014_480_MOESM3_ESM.pdf

Supplementary Fig. 3. Tutorial for using the FmMiRNADb. The step-wise description on using the database enables the user to access the web resource efficiently. (PDF 2121 kb)

Supplementary material 4 (XLS 244 kb)

Supplementary material 5 (XLS 268 kb)

Supplementary material 6 (PDF 82 kb)

Supplementary material 7 (PDF 451 kb)

Supplementary material 8 (PDF 45 kb)

Supplementary material 9 (PDF 84 kb)

Supplementary material 10 (PDF 31 kb)

Supplementary material 11 (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Y., Yadav, A., Bonthala, V.S. et al. Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tiss Organ Cult 118, 279–292 (2014). https://doi.org/10.1007/s11240-014-0480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0480-x

Keywords

Navigation