Skip to main content
Log in

A reliable methodology for assessing the in vitro photosynthetic competence of two Brazilian savanna species: Hyptis marrubioides and Hancornia speciosa

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Evaluation of photosynthetic efficiency is critical for studies on plant responses to environmental conditions as well as for genotype selection; however, there is a lack of reliable and functional protocols for such assessments of plants cultured in vitro. In this study, we aimed to adapt the conventional methodology for measuring gas exchange of plants grown in vitro to analyze the effects of irradiance, flow rate, and air humidity on the photosynthetic rate in cultured plantlets of two ‘Cerrado’ species, namely Hyptis marrubioides and Hancornia speciosa plantlets. Chlorophyll (chl) a fluorescence and chloroplastidic pigment content were also assessed. The highest photosynthetic rates were observed at a photon flux density of 600 μmol m−2 s−1, with tube inlet airflow rates between 100 and 300 mL min−1 and 80 % relative humidity in the inlet air. The electron transport rate curve, by means of chl a fluorescence, was similar to the photosynthetic rate response curve obtained with the infrared gas analyzer. These results demonstrate that both H. marrubioides and H. speciosa seedlings grown in vitro have a functional photosynthetic apparatus and respond to variations in measurement conditions, exhibiting substantial rates of CO2 assimilation under saturating irradiance conditions. The methodology proposed here can be adapted and applied to other species growing in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez C, Saéz P, Saéz K, Sánchez-Olate M, Rios D (2012) Effects of light and ventilation on physiological parameters during in vitro acclimatization of Gevuina avellana mol. Plant Cell Tissue Organ Cult 110:93–101. doi:10.1007/s11240-012-0133-x

    Article  CAS  Google Scholar 

  • Arigita L, González A, Tamés RS (2002) Influence of CO2 and sucrose on photosynthesis and transpiration of Actinidia deliciosa explants cultured in vitro. Physiol Plant 115:166–173. doi:10.1034/j.1399-3054.2002.1150119.x

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. doi:10.1146/annurev.arplant.59.032607092759

    Google Scholar 

  • Bolhàr-Nordenkampf HR, Long SP, Baker NR (1989) Chlorophyll fluorescence as probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514. doi:10.2307/2389624

    Article  Google Scholar 

  • Botrel PP, Pinto JEBP, Ferraz V, Bertolucci SKV, Figueiredo FC (2010) Teor e composição química do óleo essencial de Hyptis marrubioides Epl., Lamiaceae em função da sazonalidade. Acta Sci Agron 32:533–538. doi:10.4025/actasciagron.v32i3.3415

    CAS  Google Scholar 

  • Bussotti F, Desotgiu R, Cascio C, Pollastrini M, Gravano E, Gerosa G, Marzuoli R, Nali C, Lorenzini G, Salvatori E, Manes F, Schaub M, Strasser RJ (2011) Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environ Exp Bot 73:19–30. doi:10.1016/j.envexpbot.2010.10.022

    Article  CAS  Google Scholar 

  • Cabral JSR (2012) Otimização de parâmetros físico-químicos e microbiológicos no estabelecimento in vitro de explantes de mangabeira (Hancornia speciosa Gomez) e na sua promoção do crescimento. Dissertation, IFGoiano – Campus Rio Verde

  • Cabral JSR, Alberto PS, Pereira FDP, Souchie EL, Silva FG (2013) In vitro cultivation of Hancornia speciosa Gomes: the physical constitution of the culture medium, sucrose concentrations and growth conditions. Plant Tissue Cult Biotech 23:177–187. doi:10.3329/ptcb.v23i2.17509

    Google Scholar 

  • Chandra S, Bandopadhyay R, Kumar V, Chandra R (2010) Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett 32:1199–1205. doi:10.1007/s10529-010-0290-0

    Article  CAS  PubMed  Google Scholar 

  • Cha-um S, Chanseetis C, Chintakovid W, Pichakum A, Supaibulwatana K (2011) Promoting root induction and growth of in vitro macadamia (Macadamia tetraphylla L. ‘Keaau’) plantlets using CO2-enriched photoautotrophic conditions. Plant Cell Tissue Organ Cult 106:435–444. doi:10.1007/s11240-011-9940-8

    Article  CAS  Google Scholar 

  • Chen C (2006) In situ measurement of microclimate for the plantlets cultured in vitro. Biosyst Eng 95:413–423. doi:10.1016/j.biosystemseng.2006.08.001

    Article  Google Scholar 

  • Dai Y, Shen Z, Liu Y, Wang L, Hannaway D, Lu H (2009) Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ Exp Bot 65:177–182. doi:10.1016/j.envexpbot.2008.12.008

    Google Scholar 

  • De La Viña G, Pliego-Alfaro F, Driscoll SP, Mitchell VL, Parry MA, Lawlor DW (1999) Effects of CO2 and sugars on photosynthesis and composition of avocado leaves grown in vitro. Plant Physiol Biochem 37:587–595. doi:10.1016/S0981-9428(00)80111-4

  • De Yue YD, Desjardins Y, Lamarre M, Gosselin A (1992) Photosynthesis and transpiration of in vitro cultured asparagus plantlets. Sci Hortic 49:9–16. doi:10.1016/0304-4238(92)90138-3

    Article  Google Scholar 

  • Fila G, Badeck FW, Meyer S, Cerovic Z, Ghashghaie J (2006) Relationships between leaf conductance to CO2 diffusion and photosynthesis in micro propagated grapevine plants, before and after ex vitro acclimatization. J Exp Bot 57:2687–2695. doi:10.1093/jxb/erl040

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Iarema L, Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tissue Organ Cult 110:227–238. doi:10.1007/s11240-012-0145-6

    Article  Google Scholar 

  • Koca N, Karadeniz F, Burdurlu HS (2006) Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem 100:609–615. doi:10.1016/j.foodchem.2005.09.079

    Article  Google Scholar 

  • Kozai T, Kubota C (2005) In vitro aerial environments and their effects on growth and development of plants. In: Kozai T, Afreen F, Zobayed SMA (eds) Photoautotrophic (sugar-free medium) micro propagation as a new micro propagation and transplant production system. Springer, Netherlands, pp 33–43

    Chapter  Google Scholar 

  • Kozai T, Kubota C, Jeong BR (1997) Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tissue Organ Cult 51:49–56. doi:10.1023/A:1005809518371

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi:10.1146/annurev.pp.42.060191.001525

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micro propagation Kalmia latifolia by use of shoot-tip culture of mountain laurel. Comb Proc Int Propag Soc 30:421–427

    Google Scholar 

  • Lobo FA, Junior JHC, Rodrígues-Ortíz CE, Lucena IC, Vourlitis GL (2008) Leaf and fruiting phenology and gas exchange of Mangabeira in response to irrigation. Braz J Plant Physiol 20:1–10. doi:10.1590/S1677-04202008000100001

    Article  CAS  Google Scholar 

  • Majada J, Sierra M, Sánchez-Tamés R (2001) Air exchange rate affects the in vitro developed leaf cuticle of carnation. Sci Hortic 87:121–130. doi:10.1016/S0304-4238(00)00162-X

    Article  Google Scholar 

  • Matos CC, Fialho CMT, Ferreira EA, Silva DV, Silva AA, Santos JB, França AC, Galon L (2013) Características fisiológicas do cafeeiro em competição com plantas daninhas. Biosci J 9:1111–1119

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    Article  CAS  PubMed  Google Scholar 

  • Millan-Almaraz JR, Guevara-Gonzalez RG, Romero-Troncoso RJ, Osornio-Rios RA, Torres-Pacheco I (2009) Advantages and disadvantages on photosynthesis measurement techniques: a review. Afr J Biotechnol 8:7340–7349. doi:10.4314%2Fajb.v8i25

    CAS  Google Scholar 

  • Mohamed GH, Binder WD, Gillies L (1995) Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation. Scand J For Res 10:383–410. doi:10.1080/02827589509382904

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Palhares D, Franco AC, Zaidan LBP (2010) Respostas fotossintéticas de plantas de Cerrado na estação seca e chuvosa. Rev Bras Bioc 8:213–220 http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/1399/942. Accessed 20 Jan 2013

  • Paula JE (1992) Cerrado: sugestão para a adequação entre produção e preservação. Inf Agropecuário 16:47–48

    Google Scholar 

  • Pires TP, Souza ES, Kuki KN, Motoike SY (2013) Ecophysiological traits of the macaw palm: a contribution towards the domestication of a novel oil crop. Ind Crop Prod 44:200–210. doi:10.1016/j.indcrop.2012.09.029

    Article  CAS  Google Scholar 

  • Prioul JL, Chartier P (1977) Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used. Ann Bot 41:789–800

    Google Scholar 

  • Rêgo GM, Possamai E (2006) Efeito do sombreamento sobre o teor de chlorophyll e o crescimento inicial do jequitibá-rosa. Boletim de Pesquisa Florestal—Embrapa Florestas 53:179–194

    Google Scholar 

  • Ronen R, Galun M (1984) Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environ Exp Bot 24:239–245. doi:10.1016/0098-8472(84)90004-2

    Article  CAS  Google Scholar 

  • Ruban AV (2009) Plants in light. Commun Integr Biol 2(50–55):2009. doi:10.4161/cib.2.1.7504

    Google Scholar 

  • Saéz PL, Bravo LA, Latsague MI, Toneatti MJ, Sánchez-Olate M, Ríos DG (2013) Light energy management in micro propagated plants of Castanea sativa, effects of photo inhibition. Plant Sci 201–202:12–24. doi:10.1016/j.plantsci.2012.11.008

    Article  PubMed  Google Scholar 

  • Sales JF (2006) Germinação de sementes, crescimento da planta e composição química do óleo essencial de Hyptis marrubioides Epl. Universidade Federal de Lavras, Tese

    Google Scholar 

  • Santos RP, Cruz ACF, Iarema L, Kuki KN, Otoni WC (2008) Protocolo para extração de pigmentos foliares em porta-enxertos de videira micropropagados. Rev Ceres 55:356–364

    CAS  Google Scholar 

  • Shirke PA, Pathre UV (2004) Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J Exp Bot 55(405):2111–2120. doi:10.1093/jxb/erh229

    Article  CAS  PubMed  Google Scholar 

  • Snel JFH, Van Kooten O (1990) The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology. Photosynth Res 25:146–332. doi:10.1007/BF00033156

    Article  Google Scholar 

  • Streit NM, Cantele LP, Canto MW, Hecktheuer LHH (2005) As clorofilas. Ciência Rural 35:748–755. doi:10.1590/S0103-84782005000300043

    Article  CAS  Google Scholar 

  • Systems Qubit (2009) CO2 analysis package. Instructor’s Manual. Qubit Systems Inc., Ontario

    Google Scholar 

  • Triques K, Rival A, Beulet T, Puard M, Roy J, Nato A, Lavergne D, Havaux M, Verdeil J-L, Sangare A, Hamon S (1997) Photosynthetic ability of in vitro grown coconut (Cocos nucifera L.) plantlets derived from zygotic embryos. Plant Sci 127:39–51. doi:10.1016/S0168-9452(97)00113-1

    Article  CAS  Google Scholar 

  • Vieira Neto RD (2010) Respostas de mudas de mangabeira a fontes e doses de fósforo em solo de baixada litorânea. Dissertation, Universidade Federal de Sergipe

  • Von Elbe JH (2000) Colorantes. In: FENNEMA OW (ed) Química de los alimentos, 2nd edn. Zaragoza: Wisconsin-Madison, pp 782–799

  • Welburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  Google Scholar 

  • Xiao Y, Kozai T (2006) In vitro multiplication of static plantlets using sugar-free media. Sci Hortic 109:71–77. doi:10.1016/j.scienta.2006.02.029

    Article  CAS  Google Scholar 

  • Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micro propagation plant system. Plant Cell Tissue Organ Cult 105:149–158. doi:10.1007/s11240-010-9863-9

    Article  CAS  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta Bioenergy 1797:1428–1438. doi:10.1016/j.bbabio.2010.02.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Instituto Federal Goiano—Rio Verde Campus, GO, for financial support. They are also grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship provided to the master’s student involved in the research and to Prof. Francisco de Almeida Lobo, Universidade Federal do Mato Grosso, Brazil, for valuable suggestions regarding the methods applied in the present study.

Conflict of interest

The authors declare that there are no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Carlos Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, A.C., Rosa, M., Megguer, C.A. et al. A reliable methodology for assessing the in vitro photosynthetic competence of two Brazilian savanna species: Hyptis marrubioides and Hancornia speciosa . Plant Cell Tiss Organ Cult 117, 443–454 (2014). https://doi.org/10.1007/s11240-014-0455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0455-y

Keywords

Navigation