Skip to main content
Log in

From cells to embryos to rooted plantlets in a mist bioreactor

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A mist bioreactor using a disposable bag as culture chamber was used to propagate carrot embryogenic cells into rooted plantlets. The best operating configuration was akin to a vertical hanging garden using 50–90 μm nylon mesh for explant attachment. Cells spray inoculated into the reactor were 51.2 % viable. Misting cycle and aeration conditions were studied and showed that under the same hourly volumetric nutrient feed and 0 VVM, embryo development in the reactor was best using a 0.3 min on/2.7 min off misting cycle, yielding about 23 % post heart stage embryos. Compared to 0 VVM, 3 % CO2 enrichment improved embryo development in reactor culture. Spray inoculated cells also attached to several vertically hung poly-l-lysine coated strips and then developed in situ into embryos. Cell attachment was significantly improved when they were suspended in salt-free sucrose solution during spray inoculation. Almost 90 % of the originally attached cells remained on the nylon mesh 24 h later after spraying with B5 medium in the mist reactor. Strip grown embryos had the same post heart stage ratio but shorter overall length compared to those developed on a horizontal platform. Young plantlets developed uniformly up and down the hanging strips and did not detach after 3 weeks of culture suggesting this technology may prove useful for improving micropropagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

N50, N70, N90:

Nylon screen/mesh with openings of 50, 70 and 90 μm, respectively

P74, P105:

Polypropylene screen/mesh with opening of 74 and 105 μm, respectively

PLL:

Poly-l-lysine

References

  • Adelberg J, Fári MG (2010) Applied physiology and practical bioreactors for plant propagation. Propag Ornam Plants 10:205–219

    Google Scholar 

  • Afreen F (2006) Temporary immersion bioreactor-engineering considerations and applications in plant micropropagation. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering. Focus on biotechnology, vol 6. Springer, Heidelberg, pp 187–201

  • Afreen F, Zobayed SMA, KozaiI T (2002) Photoautotrophic culture of Coffea arabusta somatic embryos: photosynthetic ability and growth of different stage embryos. Ann Bot 90:11–19. doi:10.1093/aob/mcf150

    Article  CAS  PubMed  Google Scholar 

  • Aitken-Christie J, Kozai T, Takayama S (1995) Automation in plant tissue culture: general introduction and overview. In: Kozai T, Smith MAL, Aitken-Christie J (eds) Automation and environmental control in plant tissue culture. Kluwer, Boston, pp 1–18

    Chapter  Google Scholar 

  • Albarrán J, Bertrand B, Lartaud M, Etienne H (2005) Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tiss Organ Cult 81:27–36. doi:10.1007/s11240-004-2618-8

    Article  Google Scholar 

  • Barbón R, Jiménez E, Preil W (2008) Influence of in vitro environment on somatic embryogenesis of Coffea arabica L. cv. Caturra rojo: the effects of carbon dioxide on embryogenic cell suspensions. Plant Cell Tiss Organ Cult 95:155–161. doi:10.1007/s11240-008-9427-4

    Article  Google Scholar 

  • Buddendorfjoosten JMC, Woltering EJ (1994) Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Regul 15:1–16

    Article  CAS  Google Scholar 

  • Chung C-M, Bae KKA, Masatoshi (2000) Effects of CO2 enrichment on the differenciation and growth in tissue culture of Panax ginseng C. A. Meyer. Korean J Medicinal Crop Sci 8:14–20

    Google Scholar 

  • Correll MJ, Weathers PJ (2001a) Effects of light, CO2 and humidity on carnation growth, hyperhydration and cuticular wax development in a mist reactor. In Vitro Cell Dev Biol Plant 37:405–413. doi:10.1007/s11627-001-0071-5

    Article  Google Scholar 

  • Correll MJ, Weathers PJ (2001b) One-step acclimatization of plantlets using a mist reactor. Biotechnol Bioeng 73:253–258. doi:10.1002/bit.1058

    Article  CAS  PubMed  Google Scholar 

  • Correll MJ, Wu Y, Weathers PJ (2001) Controlling hyperhydration of carnations (Dianthus caryophyllus L.) grown in a mist reactor. Biotechnol Bioeng 71:307–314. doi:10.1002/1097-0290(2000)71:4<307:AID-BIT1019>3.0.CO;2-9

    Article  CAS  Google Scholar 

  • DiIorio A, Cheetham R, Weathers P (1992) Carbon dioxide improves the growth of hairy roots cultured on solid medium and in nutrient mists. Appl Microbiol Biot 37:463–467. doi:10.1007/bf00180969

    CAS  Google Scholar 

  • Ducos J-P, Terrier B, Courtois D (2009) Disposable bioreactors for plant micropropagation and mass plant cell culture. Adv Biochem Eng/Biotechnol 115:89–115. doi:10.1007/10_2008_28

    Article  CAS  Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tiss Organ Cult 69:215–231. doi:10.1023/a:1015668610465

    Article  Google Scholar 

  • Facchini PJ, Wilhelm Neumann A, DiCosmo F (1989) Adhesion of suspension-cultured Catharanthus roseus cells to surfaces: effect of pH, ionic strength, and cation valency. Biomaterials 10:318–324. doi:10.1016/0142-9612(89)90072-0

    Article  CAS  PubMed  Google Scholar 

  • Fari MG, Kertesz T, Laszlo M, Varga Z (2006) Design of a revert rotary plant micropropagation bioreactor-’3R’ system: application for research, possibilities of scaling-up and limitations. Acta Hortic 725:561–570

    Google Scholar 

  • Fisichella M, Morini S (2003) Somatic embryo and root regeneration from quince leaves cultured in ventilated vessels or under different oxygen and carbon dioxide levels. In Vitro Cell Dev Biol Plant 39:402–408. doi:10.1079/ivp2003429

    Article  Google Scholar 

  • Gamborg O, Murashige T, Thorpe T, Vasil I (1976) Plant tissue culture media. In Vitro Cell Dev Biol Plant 12:473–478. doi:10.1007/bf02796489

    Article  CAS  Google Scholar 

  • Grafen A, Hails R (2002) Modern statistics for the life sciences. Oxford University Press, Oxford, pp 241–243

    Google Scholar 

  • Guo Z, Zeng Z, Liu R, Deng Y (2005) Morphological transformation of plant cells in vitro and its effect on plant growth. Tsinghua Sci Technol 10:573–578. doi:10.1016/s1007-0214(05)70120-6

    Article  CAS  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120. doi:10.1016/j.scienta.2006.01.038

    Article  CAS  Google Scholar 

  • Huang SY, Chan HS, Wang TT (2006) Induction of somatic embryos of celery by control of gaseous compositions and other physical conditions. Plant Growth Regul 49:219–227. doi:10.1007/s10725-006-9113-7

    Article  CAS  Google Scholar 

  • Jay V, Genestier S, Courduroux J-C (1992) Bioreactor studies on the effect of dissolved oxygen concentrations on growth and differentiation of carrot (Daucus carota L.) cell cultures. Plant Cell Rep 11:605–608. doi:10.1007/bf00236382

    CAS  PubMed  Google Scholar 

  • Jeong C-S, Chakrabarty D, Hahn E-J, Lee H-L, Paek K-Y (2006) Effects of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots. Biochem Eng J 27:252–263. doi:10.1016/j.bej.2005.08.025

    Article  CAS  Google Scholar 

  • Li H, Kurata K (2005) Static suspension culture of carrot somatic embryos. J Biosci Bioeng 99:300–302. doi:10.1263/jbb.99.300

    Article  CAS  PubMed  Google Scholar 

  • Liu CZ, Towler MJ, Medrano G, Cramer CL, Weathers PJ (2009) Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol Bioeng 102:1074–1086. doi:10.1002/bit.22154

    Article  CAS  PubMed  Google Scholar 

  • Loberant B, Altman A (2010) Micropropagation of plants. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 3499–3515

    Google Scholar 

  • Lowe KC, Anthony P, Power JB, Davey MR (2003) Invited review: novel approaches for regulating gas supply to plant systems in vitro: Application and benefits of artificial gas carriers. In Vitro Cell Dev Biol: Plant 39:557–566. doi:10.1079/ivp2003469

    Article  CAS  Google Scholar 

  • Paek KY, Hahn EJ, Son SH (2001) Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cell Dev Biol: Plant 37:149–157. doi:10.1007/s11627-001-0027-9

    Article  CAS  Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Organ Cult 81:287–300. doi:10.1007/s11240-004-6648-z

    Article  Google Scholar 

  • Pospisilova J, Ticha I, Kadlecek P, Haisel D, Plzakova S (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42:481–497. doi:10.1023/A:1002688208758

    Article  Google Scholar 

  • Robert ML, Herrera-Herrera JL, Herrera-Herrera G, Herrera-Alamillo MÁ, Fuentes-Carrillo P (2006) A new temporary immersion bioreactor system for micropropagation. Methods Mol Biol 318:121–129. doi:10.1385/1-59259-959-1:121

    PubMed  Google Scholar 

  • Rosnow J, Offermann S, Park J, Okita T, Tarlyn N, Dhingra A, Edwards G (2011) In vitro cultures and regeneration of Bienertia sinuspersici (Chenopodiaceae) under increasing concentrations of sodium chloride and carbon dioxide. Plant Cell Rep 30:1541–1553. doi:10.1007/s00299-011-1067-1

    Article  CAS  PubMed  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1989) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Rep 8:182–185. doi:10.1007/bf00716836

    Article  CAS  PubMed  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1990) Inhibition of ethylene production and stimulation of carrot somatic embryogenesis by salicylic acid. Biol Plant 32:273–276. doi:10.1007/bf02886947

    Article  CAS  Google Scholar 

  • Roustan J-P, Latché A, Fallot J (1994) Role of ethylene on induction and expression of carrot somatic embryogenesis: relationship with polyamine metabolism. Plant Sci 103:223–229. doi:10.1016/0168-9452(94)90210-0

    Article  CAS  Google Scholar 

  • Shaik S, Dewir YH, Singh N, Nicholas A (2010) Micropropagation and bioreactor studies of the medicinally important plant Lessertia (Sutherlandia) frutescens L. S Afr J Bot 76:180–186. doi:10.1016/j.sajb.2009.10.005

    Article  Google Scholar 

  • Shigeta J, Sato KJ, Mii M (1996) Effects of initial cell density, pH and dissolved oxygen on bioreactor production of carrot somatic embryos. Plant Sci 115:109–114. doi:10.1016/s0168-9452(96)04327-o

    Article  CAS  Google Scholar 

  • Shimazu T, Kurata K (1999) Relationship between production of carrot somatic embryos and dissolved oxygen concentration in liquid culture. Plant Cell Tiss Organ Cult 57:29–38. doi:10.1023/a:1006267002706

    Article  Google Scholar 

  • Shoji M, Sato H, Nakagawa R, Funada R, Kubo T, Ogita S (2006) Influence of osmotic pressure on somatic embryo maturation in Pinus densiflora. J For Res 11:449–453. doi:10.1007/s10310-006-0227-6

    Article  Google Scholar 

  • Shomer I, Novacky AJ, Pike SM, Yermiyahu U, Kinraide TB (2003) Electrical potentials of plant cell walls in response to the ionic environment. Plant Physiol 133:411–422. doi:10.1104/pp.103.024539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snyman SJ, Nkwanyana PD, Watt MP (2011) Alleviation of hyperhydricity of sugarcane plantlets produced in RITA (R) vessels and genotypic and phenotypic characterization of acclimated plants. S Afr J Bot 77:685–692. doi:10.1016/j.sajb.2011.03.004

    Article  Google Scholar 

  • Takamura T, Imose Y, Tanaka M (2010) Effect of CO2 enrichment on in vitro plant regeneration through somatic embryogenesis in cyclamen (Cyclamen persicum mill.). Kagawa Daigaku Nogakubu Gakujutsu Hokoku 62:1–4

    CAS  Google Scholar 

  • Tate J, Payne G (1991) Plant cell growth under different levels of oxygen and carbon dioxide. Plant Cell Rep 10:22–25. doi:10.1007/bf00233026

    CAS  PubMed  Google Scholar 

  • Towler MJ, Weathers PJ (2003) Adhesion of plant roots to poly-l-lysine coated polypropylene substrates. J Biotechnol 101:147–155. doi:10.1016/S0168-1656(02)00319-X

    Article  CAS  PubMed  Google Scholar 

  • Towler MJ, Kim Y, Wyslouzil BE, Correll M, Weathers PJ (2006) Design, development, and applications of mist bioreactors for micropropagation and hairy root culture. In: Ibaraki Y, Gupta SD (eds) Plant tissue culture engineering. Focus on biotechnology, vol 6. Springer, Heidelberg, pp 119–134

  • Wang YS, Tong Y, Li YF, Zhang Y, Zhang J, Feng JY, Feng H (2011) High frequency plant regeneration from microspore-derived embryos of ornamental kale (Brassica oleracea L. var. acephala). Sci Hortic 130:296–302. doi:10.1016/j.scienta.2011.06.029

    Article  CAS  Google Scholar 

  • Weathers PJ, Zobel RW (1992) Aeroponics for the culture of organisms, tissues and cells. Biotechnol Adv 10:93–115. doi:10.1016/0734-9750(92)91353-G

    Article  CAS  PubMed  Google Scholar 

  • Weathers PJ, Towler MJ, Xu JF (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biot 85:1339–1351. doi:10.1007/s00253-009-2354-4

    Article  CAS  Google Scholar 

  • Widholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194

    CAS  PubMed  Google Scholar 

  • Wyslouzil BE, Waterbury RG, Weathers PJ (2000) The growth of single roots of Artemisia annua in nutrient mist reactors. Biotechnol Bioeng 70:143–150. doi:10.1002/1097-0290(20001020)70:2<143:aid-bit3>3.0.co;2-b

    Article  CAS  PubMed  Google Scholar 

  • Ziv M (1991) Morphogenic patterns of plants micropropagated in liquid medium in shaken flasks or large scale bioreactor cultures. Israel J Bot 40:145–153

    Google Scholar 

  • Ziv M (2010) Bioreactor technology for plant micropropagation. In: Janick J (ed) Horticultural reviews. Wiley, New York, pp 1–30

Download references

Acknowledgments

The authors thank WPI for supporting L Fei. Advice from Dr. Melissa Towler and Prof. Elizabeth Ryder of the Department of Biology and Biotechnology at WPI was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela J. Weathers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, L., Weathers, P.J. From cells to embryos to rooted plantlets in a mist bioreactor. Plant Cell Tiss Organ Cult 116, 37–46 (2014). https://doi.org/10.1007/s11240-013-0380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0380-5

Keywords

Navigation