Skip to main content
Log in

In silico identification and characterization of putative differentially expressed genes involved in common bean (Phaseolus vulgaris L.) seed development

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Two genotypes of common bean (Phaseolus vulgaris L.) were studied to determine the structural cause of seed abortion in this species. In the non-abortive control (wild-type, cultivar BAT93), the histological analysis revealed a classical pattern of seed development and showed coordinated differentiation of the embryo proper, suspensor, endosperm tissue and seed coat. In contrast, the ethyl methanesulfonate (EMS) mutant (cultivar BAT93) showed disruption in the normal seed development leading to embryo abortion. Aborted embryos from these degenerate seeds showed abnormalities in suspensor and cotyledons at the globular, heart, torpedo and cotyledon stages. Exploring the feasibility of incorporating the available online bioinformatics databases, we identified 22 genes revealing high homology with genes involved in Arabidopsis thaliana embryo development and expressed in common bean immature seeds. The expression patterns of these genes were confirmed by RT–PCR. All genes were highly expressed in seed tissues. To study the expression profiles of isolated genes during Phaseolus embryogenesis, six selected genes were examined by quantitative RT–PCR analysis on the developing embryos of wild-type and EMS mutant plants. All selected genes were expressed differentially at different stages of embryo development. These results could help to improve understanding of the mechanism of common bean embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAP:

Days after pollination

EMS:

Ethyl methanesulfonate

EST:

Expressed sequence tag

RT–PCR:

Reverse transcription polymerase chain reaction

References

  • Alemanno L, Devic M, Niemenak N, Sanier C, Guilleminot J, Rio M, Verdeil JL, Montoro P (2008) Characterization of leafy cotyledon1-like during embryogenesis in Theobroma cacao L. Planta 227:853–866

    Article  PubMed  CAS  Google Scholar 

  • Apuya NR, Yadegari R, Fischer RL, Harada JJ, Goldberg RB (2002) RASPBERRY3 gene encodes a novel protein important for embryo development. Plant Physiol 129:691–705

    Article  PubMed  CAS  Google Scholar 

  • Baster P, Ledwon A, Gli wicka M, Trojanowska A, Gaj MD (2009) Arabidopsis tanmei/emb 2757 embryo mutant is defective for in vitro plant morphogenesis. Plant Cell Tiss Organ Cult 99:305–312

    Article  CAS  Google Scholar 

  • Ben C, Hewezi T, Jardinaud MF, Bena F, Ladouce N, Moretti S, Tamborindeguy C, Liboz T, Petiprez M, Gentzbittel L (2005) Comparative analysis of early embryonic sunflower cDNA libraries. Plant Mol Biol 57:255–270

    Article  PubMed  Google Scholar 

  • Bishop-Hurley SL, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tiss Organ Cult 74:267–281

    Article  CAS  Google Scholar 

  • Chandler JW (2008) Cotyledon organogenesis. J Exp Bot 59:2917–2931

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15:902–911

    Article  PubMed  CAS  Google Scholar 

  • Chiappetta A, Fambrini M, Petrarulo M, Rapparini F, Michelotti V, Bruno L, Greco M, Baraldi R, Salvini M, Pugliesi C, Bitonti MB (2009) Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryonic competence in epiphyllous plants of Helianthus annus × H. tuberosus. Ann Bot 103:735–747

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Keller WA, Yan W, Georges F (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed abundant cDNAs. Planta 218:483–491

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ, Van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JDG, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    Article  PubMed  CAS  Google Scholar 

  • Errampalli D, Patton D, Castle L, Mickelson L, Hansen K, Schnall J, Feldmann K, Meinke D (1991) Embryonic lethal and T-DNA insertional mutagenesis in Arabidopsis. Plant Cell 3:149–157

    Article  PubMed  CAS  Google Scholar 

  • Gomez LD, Baud S, Gilday A, Li Y, Graham A (2006) Delayed embryo development in the ARABIDOPSIS TRHALOSE-6-PHOSPHATE SYNTHASE 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. Plant J 46:69–84

    Article  PubMed  CAS  Google Scholar 

  • Graham MA, Silverstein KAT, Cannon SB, Van den Bosh KA (2004) Computational identification and characterization of novel genes from legumes. Plant Physiol 135:1179–1197

    Article  PubMed  CAS  Google Scholar 

  • Griffith ME, Mayer U, Capron A, Ngo QA, Surendrarao A, McClinton R, Jürgens G, Sundaresan V (2007) The TORMOZ gene encodes a nucleolar protein required for regulated division planes and embryo development in Arabidopsis. Plant Cell 19:2246–2263

    Article  PubMed  CAS  Google Scholar 

  • Gutmann M (1995) Improved staining procedures for photographic documentation of phenolic deposits in semithin sections of plant tissues. J Microsc 179:277–281

    Article  CAS  Google Scholar 

  • Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Hobbie L, McGovern M, Hurwitz LR, Pierro A, Yang Liu N, Bandyopadhyay A, Estelle M (2000) The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127:23–32

    PubMed  CAS  Google Scholar 

  • Jürgens G (2003) Growing up green: cellular basis of plant development. Mech Dev 120:1395–1406

    Article  PubMed  Google Scholar 

  • Jürgens G, Torres Ruiz RA, Berleh T (1994) Embryonic pattern formation in flowering plants. Rev Genet 28:351–371

    Article  Google Scholar 

  • Kandasamy MK, McKinney EC, Deal RB, Meagher RB (2005) Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission. Plant Physiol 138:2019–2032

    Article  PubMed  CAS  Google Scholar 

  • Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18

    Article  PubMed  CAS  Google Scholar 

  • Kyjovska Z, Repkova J, Relichova J (2003) New embryo lethal in Arabidopsis thaliana: basic genetic and morphological study. Genetica 119:317–325

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Jürgens G (1997) Embryogenesis: a new start into life. Plant Cell 9:989–1000

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Würschum T, Breuniger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16:190–202

    Article  Google Scholar 

  • Li Z, Thomas TL (1998) PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell 10:383–398

    Article  PubMed  CAS  Google Scholar 

  • Liu CM, Meinke DW (1998) The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J 16:21–31

    Article  PubMed  CAS  Google Scholar 

  • Liu CM, Xu ZH, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Xu W, Wei Q, Zhang Z, Xing Z, Tan L, Di C, Yao D, Wang C, Tan Y, Yan H, Ling Y, Sun C, Xue Y, Su Z (2010) Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica) and 93–11 (Indica) during oxidative stress. PLos One 5:1–11

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and 2−∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fisher RL, Golberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • McElver J, Patton D, Rumbaugh M, Liu C, Yang LJ, Meinke D (2000) The TITAN5 gene of Arabidopsis encodes a protein related to the ADP ribosylation factor family of GTP binding proteins. Plant Cell 12:1379–1392

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW, Sussex IM (1979) Embryo-lethal mutants of Arabidopsis thaliana: a model system for genetic analysis of plant embryo development. Dev Biol 72:50–61

    Article  PubMed  CAS  Google Scholar 

  • Naway T, Lukowitz W, Bayer M (2008) Talk global, act local-patterning the Arabidopsis embryo. Curr Opin Plant Biol 11:28–33

    Article  Google Scholar 

  • Patton DA, Schetter AL, Franzmann LH, Nelson K, Ward ER, Meinke DW (1998) An embryo-defective mutant of Arabidopsis disrupted in the final step of biotin synthesis. Plant Physiol 116:935–946

    Article  PubMed  CAS  Google Scholar 

  • Rademacher EH, Weijers D (2007) Got root? Initiation of the embryonic root meristem. Int J Plant Dev Biol 1:49–59

    Google Scholar 

  • Ramirez M, Graham MA, Blanco-Lopez L, Silvente S, Medrano-Soto A, Blair MW, Hernandez G, Vance CP, Lara M (2005) Sequencing and analysis of common bean ESTs building a foundation for functional genomics. Genome Anal 137:1211–1227

    CAS  Google Scholar 

  • Raz V, Bergervoet JH, Koorneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252

    PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schwartz BW, Yeung EC, Meinke DW (1994) Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120:3235–3245

    CAS  Google Scholar 

  • Silué S, Lariguet P, Pankhurst C, Jacquemin JM, Broughton WJ, Baudoin JP (2006) Screening Phaseolus vulgaris L. EMS mutants to isolate plants which failed in seed development. Annu Rep Bean Improv Coop 49:149–150

    Google Scholar 

  • Sollner R, Glasser G, Wanner G, Somerville CR, Jürgens G, Assaad FF (2002) Cytokenesis-defective mutants of Arabidopsis. Plant Physiol 129:678–690

    Article  PubMed  CAS  Google Scholar 

  • Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, Küttner F, Lepiniec L, Stierhof YD, Schwarz H, Jürgens G, Mayer U (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Gene Dev 16:959–971

    Article  PubMed  CAS  Google Scholar 

  • Tsuwamato R, Takhata Y (2008) Identification of genes specifically expressed in androgenesis-derived embryo in rapeseed (Brassica napus L.). Breed Sci 58:251–259

    Article  Google Scholar 

  • Tzafrir I, McElver JA, Liu C, Yang LJ, Wu JQ, Martinez A, Patton D, Meinke D (2002) Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol 128:38–51

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, Dickerman A, Brazhink O, Nguyen Q, McElver J, Frye C, Patton D, Meinke D (2003) The Arabidopsis seed genes project. Nucleic Acids 31:90–93

    Article  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meike D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  PubMed  CAS  Google Scholar 

  • Vernon DM, Hannon MJ, Le M, Forsthoefel NR (2001) An expanded role for the TWN1 gene in embryogenesis: defects in cotyledon pattern and morphology in the TWN1 mutant of Arabidopsis (Brassicaceae). Am J Bot 88:570–582

    Article  PubMed  CAS  Google Scholar 

  • Vidaure DP, Ploense S, Krogan NT, Berleth T (2007) AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis. Development 134:2561–2567

    Article  Google Scholar 

  • Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hooykaas P, Offringa R (2001) An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128:4289–4299

    PubMed  CAS  Google Scholar 

  • Wu X, Li F, Zhang C, Liu C, Zhang X (2009) Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis. J Plant Physiol 166:1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi K, Nagata N, Yee KM, Braybrook SA, Pelletier J, Fujioka S, Yoshida S, Fischer RL, Goldberg RB, Harada JJ (2005) TANMEI/EMB 2757 encodes a WD repeat protein required for embryo development in Arabidopsis. Plant Physiol 139:163–173

    Article  PubMed  CAS  Google Scholar 

  • Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5:1371–1381

    Article  PubMed  Google Scholar 

  • Yeung EC, Sussex IM (1979) Embryology of Phaseolus coccineus: the suspensor and the growth of the embryo-proper in vitro. Z Planzenphysiol 91:423–433

    CAS  Google Scholar 

  • Zakizadeh H, Stummann BM, Lütken H, Müller R (2010) Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrid cv. Linda). Plant Cell Tissue Organ Cult 101:331–338

    Article  CAS  Google Scholar 

  • Zhang JZ, Somerville CR (1997) Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. Dev Biol 94:7349–7355

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassen Abid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abid, G., Muhovski, Y., Jacquemin, JM. et al. In silico identification and characterization of putative differentially expressed genes involved in common bean (Phaseolus vulgaris L.) seed development. Plant Cell Tiss Organ Cult 107, 341–353 (2011). https://doi.org/10.1007/s11240-011-9986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9986-7

Keywords

Navigation