Skip to main content
Log in

Genetic transformation of Populus tomentosa to improve salt tolerance

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Soil salinity can be a limiting factor for productivity in agriculture and forestry. In order to fully utilize saline lands productively in plantation forestry for pulp production, the genetic modification of tree species for salt-tolerance may be required. The AhDREB1 gene, a DREB-like transcription factor gene, was transferred into Populus tomentosa by Agrobacterium-mediated transformation. Transgenic plants were regenerated and selected using a two-step process; first on Murashige and Skoog (MS) basal medium containing 4.44 μM 6-benzyladenine (BA), 1.61 μM α-naphthaleneacetic acid (NAA), 30 mg l−1 kanamycin, and 250 mg l−1 ceftomine, and then enhanced selection on medium with 50 mg l−1 kanamycin. The putative transformants were confirmed by polymerase chain reaction (PCR) and Southern hybridization for the AhDREB1 gene. Transgenic plants were rooted on half-strength MS medium containing 5.71 μM indole-3-acetic acid (IAA), 1.61 μM NAA, 2 g l−1 sucrose, and 5 g l−1 agar. The salt tolerance of transgenic plants in pots in the greenhouse showed a survival rate of 100, 100, 84.4, and 44.4% after watering with a solution of 34.2, 68.4, 102.7, and 136.9 mM NaCl, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

IAA:

Indole-3-acetic acid

MS:

Murashige and Skoog

NAA:

Napthaleneacetic acid

nptII:

Neomycin phosphotransferase

PCR:

Polymerase chain reaction

qPCR:

Quantitative real-time polymerase chain reaction

References

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Luo K, Li Z, Yang Y (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177:43–48

    Article  CAS  Google Scholar 

  • Du NX, Li Y, Yu HW (2002) Establishment of high frequency regeneration system of Populus tomentosa. For Stud China 4:48–51

    Google Scholar 

  • Fan J, Han Y, Li L, Peng X, Li J (2002) Studies on transformation of mtlD\gutD divalent genes to Populus deltoids × P. cathayana. Sci Silvae Sinica 38:30–35

    CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Hao G, Zhu Z, Zhu Z (1999) Study on optimization of transformation of Populus tomentosa. Acta Bot Sin 41:936–940

    Google Scholar 

  • Hasthanasombut S, Supaibulwatana K, Mii M, Nakamura I (2011) Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tiss Organ Cult 104:79–89

    Article  CAS  Google Scholar 

  • Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281

    PubMed  CAS  Google Scholar 

  • Jiang C-Q, Zheng Q-S, Liu Z-P, Xu W-J, Li H-y, Li Q (2010) Salt tolerance of transgenic poplar by the introduction of AtNHX1 gene. Chinese J Plant Ecol 34:563–570

    Google Scholar 

  • Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Kumar V, Shriram V, Kavi Kishor PB, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotech Rep 4:37–48

    Article  Google Scholar 

  • Li H (2000) Experimental Principles and Techniques of Plant Physiology and Biochemistry. Higher Education Press, Beijing

    Google Scholar 

  • Li J, Wang Y, Jiang J, Liu G, Wang L, Yang L (2010a) Expression of eIF1A gene in transgenic Populus davidiana × P. bolleana and its salt tolerance. J Northeast For Univ 38:12–14

    Google Scholar 

  • Li Y, Zhang Y, Feng F, Liang D, Cheng L, Ma F, Shi S (2010b) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tiss Organ Cult 102:337–345

    Article  CAS  Google Scholar 

  • Lin S-Z, Zhang Z-Y, Zhang Q, Lin Y-Z (2006) Progress in the study of molecular genetic improvements of poplar in China. J Integr Plant Biol 48:1001–1007

    Article  CAS  Google Scholar 

  • Liu G-F, Cheng G-L, Jiang J, Bai S, Yu Y, Cai Z-J, Dong J-X, Li S-J (2006) The transformation of betA gene into the pollen plantlets of Populus simonii × P. nigra. J Plant Physiol and Mol Biol 32:163–168

    CAS  Google Scholar 

  • Liu T–T, Pang X-M, Long C, Zhang Z-Y (2008a) Successful Agrobacterium-mediated transformation of Populus tomentosa with apple SPDS gene. For Stud China 10:153–157

    Article  CAS  Google Scholar 

  • Liu J, Wang C, Wang B, Liu J, Zhao J, Huang Y, Zhang H (2008b) Study on the salt tolerance of genetically modified triploid Chinese white poplar. For Res Beijing 21:379–385

    Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (2001) Somaclonal variation in rice after two successive cycles of mature embryo derives callus culture in the presence of NaCl. Biol Plantarum 44:489–495

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oraby HF, Ransom CB, Kravchenko AN, Sticklen MB (2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci 45:2218–2227

    Article  CAS  Google Scholar 

  • Qiao G, Zhou J, Jiang J, Sun Y, Pan L, Song H, Jiang J, Zhuo R, Wang X, Sun Z (2010) Transformation of Liquidambar formosana L. via Agrobacterium tumefaciens using a mannose selection system and recovery of salt tolerant lines. Plant Cell Tiss Organ Cult 102:163–170

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 3, 2nd edn. Cold Spring Harbor laboratory Press, Planview

    Google Scholar 

  • SAS Institute (1999) The SAS system for Windows, ver. 8. SAS Inst, Cary NC

    Google Scholar 

  • Sharma KK, Lavanya M (2002) Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. JIRCAS Working Rep 23:61–73

    CAS  Google Scholar 

  • Shen YG, Yan DQ, Zhang WK, Du BX, Zhang JS, Liu Q, Chen SY (2003) Novel halophyte EREBP/AP2-type DNA binding protein improves salt tolerance in transgenic tobacco. Acta Bot Sinica 45:82–87

    CAS  Google Scholar 

  • Shen J-L, Li Y, Jiang J-Z, Chen S-Y (2008) Establishment of a transgenic system in fast-growing black locust (Robinia pseudoacacia L.). For Stud China 10:243–252

    Article  CAS  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, David Ho T-H, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yang CP, Liu GF, Liang HW, Zhang H (2001) Study on the transformation of Populus simonii × P. nigra with salt resistance gene BetA. Scientia Silvae Sinica 37:34–38

    Google Scholar 

  • Yang C, Li H, Cheng Q, Chen Y (2009) Transformation of drought and salt resistant gene (DREB1C) in Populus × euramericana cv. Nanlin 895. Scientia Silvae Sinicae 45:17–21

    CAS  Google Scholar 

  • Zhang DZ, Wang PH, Zhao HX (1990) Determination of the content of free proline in wheat leaves. Plant Physiol Commun 16:62–65

    Google Scholar 

  • Zhang Q, Zhang ZY, Lin SZ, Lin YZ (2005) Resistance of transgenic hybrid triploids in Populus tomentosa Carr. against 3 species of Lepidoterans following two winter dormancies conferred by high level expression of cowpea trypsin inhibitor gene. Silvae Genet 54:108–116

    Google Scholar 

  • Zhang C, Gai Y, Zhu Y, Chen X, Jiang X (2008a) Construction of a bidirectional promoter and its transient expression in Populus tomentosa. Front For China 3:112–116

    Article  Google Scholar 

  • Zhang TT, Song YZ, Liu YD, Guo XQ, Zhu CX, Wen FJ (2008b) Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa. Chinese Sci Bull 53:3656–3665

    Article  CAS  Google Scholar 

  • Zhu Z (1988) Collection, conservation and breeding studies of gene resources of Populus tomentosa in China. Intl Poplar Comm, Beijing, China, p 30

    Google Scholar 

  • Zhu ZT, Zhang ZY (1997) The status and advances of genetic improvement of Populus tomentosa Carr. J Beijing For Univ 6:1–7

    Google Scholar 

  • Zou WH, Zhao QA, Cui DC, Wang B (2006) Transformation of Populus deltoides with anti-PLD gamma gene and chitinase gene. Scientia Silvae Sinicae 42:37–42

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank members of the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences who kindly provided the vector (Patent No: ZL 01 1 23827.5). The authors gratefully acknowledge Drs. John M. Davis and Armand Seguin for their constructive review and suggestions for improvement of this manuscript. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that also may be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, N., Liu, X., Li, Y. et al. Genetic transformation of Populus tomentosa to improve salt tolerance. Plant Cell Tiss Organ Cult 108, 181–189 (2012). https://doi.org/10.1007/s11240-011-0026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0026-4

Keywords

Navigation