Skip to main content
Log in

A DREB gene from the xero-halophyte Atriplex halimus is induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Studying the regulation of stress inducible genes can lead to understanding of the mechanisms by which halophytes maintain growth and thrive under abiotic stress. Verifying whether ionic or osmotic components of salt stress control the regulation of Dehydration Responsive Element- binding transcription factor (DREB) was investigated in the present study. DREB belongs to AP2/EREB group that is induced under abiotic stress and regulates many stress inducible genes that contain DRE binding sites in their promoters. DREB in Atriplex halimus was regulated by the osmotic component but not by the ionic one of salt stress. It seemed that DREB was not involved in the regulation of sodium manipulating genes like NHX1, SOS1 or H +-PPase. Moreover, DREB could be involved directly of indirectly in CMO regulation because of timing of induction. Also, DREB was the most upregulated gene under salt (fivefold) and drought (twofold) conditions, which reinforced the importance of this gene in A. halimus tolerance to stress. Moreover, its constitutive expression under normal conditions also indicated its involvement in other growth and developmental programs. The tolerance of A. halimus and of halophytes, in general, could be attributed to the constitutive expression of its genes and differences in protein structures between halophytes and glycophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen MD, Yamasaki M, Ohme-Takagi M, Tatenol M, Suzuki M (1998) A novel mode of DNA recognition by a b-sheet revealed by the solution structure of the GCC-box binding-domain in complex with DNA. Eur Mol Biol Organ J 17:5484–5496

    CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance. Cur Opin Biotech 13:146–150

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in arabidopsis. Sci 285:1256–1258

    Article  CAS  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci 137:131–142

    Article  CAS  Google Scholar 

  • Ben Hassine A, Ghanem ME, Bouzid S, Lutts S (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J Exp Bot 59:1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Bioch Biophy Acta 1456:140–151

    Article  Google Scholar 

  • Cao ZF, Li J, Chen F, Li YQ, Zhou HM, Liu Q (2001) Effect of two conserved amino-acid residues on DREB1A function. Biochem 66:623–627

    CAS  Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia lQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Bioch Biophy Res Commu 353:299–305

    Article  CAS  Google Scholar 

  • Chen J, Xia X, Yin W (2009) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Bioch Biophy Res Commu 378:483–487

    Article  CAS  Google Scholar 

  • Cong L, Zheng HC, Zhag YX, Chai TY (2008) Arabidopsis DREB1A confers high salinity tolerance and regulates the expression of GA dioxygenases in Tobacco. Plant Sci 174:156–164

    Article  CAS  Google Scholar 

  • Diedhiou CJ, Popova OV, Golldack D (2009) Transcript profiling of the salt-tolerant Festuca rubra ssp. litoralis reveals a regulatory network controlling salt acclimatization. J Plant Physiol 166:697–711

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZH, Li LC, Zhao CP, Cheng XC, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H1-pump. Pro Nat Acad Sci USA 98:11444–11449

    Article  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–443

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781

    Article  PubMed  CAS  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential oh halophytes. Cri Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Hansen EH, Munns DN (1988) Effect of CaSO4 and NaCl on mineral content of Leucaena leucocephala. Plant Soil 7:101–105

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hatch MD, Osmond CB (1976) Compartmentation and transport in C4 photosynthesis. In: Stocking CR, Heber U (eds) Transport in plants. III. Intracellular interactions and transport processes. Encyclopedia of plant physiology, New Series 3 pp 144–184

  • Hayashi H, Murata N (1998) Genetically engineered enhancement of salt tolerance in higher plants. In: Satoh K, Murata N (eds) Stress responses of photosynthetic organisms. Elsevier, Amsterdam, pp 133–148

    Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical communication 22. Commonwealth Bureau of horticulture plantation crops, GB

    Google Scholar 

  • Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nat 435:1197–1202

    Article  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T halophila. Plant Cell Environ 29:1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  PubMed  CAS  Google Scholar 

  • Laemmlli EK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat 227:680–685

    Article  Google Scholar 

  • Leubner-Metzger G, Petruzzelli L, Waldvogel R (1998) Ethylene responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1, 3-glucanase during tobacco seed germination. Plant Mol Biol 38:785–795

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek BA, Murphy AS, Gilroy S, Gaxiola RA (2005) Arabidopsis H + -PPase AVP1 regulates auxin mediated organ development. Sci 310:121–125

    Article  CAS  Google Scholar 

  • Li JY, He X, Xu L, Zhou J, Wu P, Shou H, Zhang F (2008) Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species. J Zhejiang Univ 9:132–140

    Article  CAS  Google Scholar 

  • Li HY, Wang YC, Jiang J, Liu GF, Gao CQ, Yang CP (2009) Identification of genes responsive to salt stress on Tamarix hispida roots. Gene 433:65–71

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu J, Tang MJ, Diao Y, Shen SH (2005) A DREB gene in asparagus. Photosynthesis Research Center, Institute of Botany, Chinese Academy of Science, China

    Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2010) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult. doi: 10.1007/s11240-010-9802-9

  • Ma XL, Zhang Q, Shi HZ, Zhu JK, Zhao YX, Ma CL, Zhang H (2004) Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene in Suaeda salsa under salt stress. Biol Plant 48:219–225

    Article  CAS  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Bioch Biophy Acta 1465:37–51

    Article  CAS  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Ann Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  Google Scholar 

  • Martınez JP, Ledent JF, Bajji M, Kinet JM, Lutts S (2003) Effect of water stress on growth, Na and K accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L. Plant Grow Regu 41:63–73

    Article  Google Scholar 

  • Martınez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    Article  PubMed  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis CBF3/DREB1A transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 52:297–314

    Article  CAS  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–22

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Murata S, Kobayashi M, Matoh T, Sekiya J (1992) Sodium stimulates regeneration of phosphoenolpyruvate in mesophyll chloroplasts of chloroplasts of Amaranthus tricolor. Plant Cell Physiol 33:1247–1250

    CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozak K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    Article  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Montagu MV, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding-proteins in Arabidopsis. Pro Nat Acad Sci USA 94:7076–7081

    Article  CAS  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Gen 47:493–500

    CAS  Google Scholar 

  • Qin F, Li J, Zhang GY, Zhao J, Chen SY, Liu Q (2003) Isolation and structural analysis of DRE-binding transcription factor from maize (Zea mays L.). Acta Botin Sini 45:331–339

    CAS  Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Ann Rev Plant Physiol Plant Mol Biol 44:157–180

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang ZS, Liu Q, Chen SY (2003a) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration, and ABA stress. Theor Appl Gene 106:923–930

    CAS  Google Scholar 

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang ZS, Liu Q, Chen SY (2003b) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Gene 107:155–161

    CAS  Google Scholar 

  • Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550

    Article  PubMed  CAS  Google Scholar 

  • Subbarao GV, Wheeler RM, Levine LH, Stutte GW (2001) Glycine betaine accumulation, ionic and water relations of red beet at contrasting levels of sodium supply. J Plant Physiol 158:767–776

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam K, Sailaja KV, Subramanyam K, Rao DM, Lakshmidevi K (2010) Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tiss Organ Cult. doi: 10.1007/s11240-010-9850-1

  • Sze H, Wald JM, Lai S, Perera I (1992) Vacuolar-type H+-translocating ATPases in plant endomembranes: subunit organization and multigene families. J Exp Biol 172:123–135

    PubMed  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between arabidopsis and arabidopsis-related halophyte salt cress using arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Takahashi R, Liu S, Takano T (2009) Isolation and characterization of plasma membrane Na+/H+ antiporter genes from salt-sensitive and salt-tolerant reed plants. J Plant Physiol 166:301–309

    Article  PubMed  CAS  Google Scholar 

  • Wang YM, He CF (2007) Isolation and characterization of a cold-induced DREB gene from Aloe Vera L. Plant Mol Biol Rep 25:121–132

    Article  Google Scholar 

  • Wang BS, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365

    Article  PubMed  CAS  Google Scholar 

  • Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kimd CS, Zhang CQ, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, Zhao YX, Zhang H (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–616

    Article  CAS  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  PubMed  CAS  Google Scholar 

  • Wang QJ, Xu KY, Tong ZG, Wang SH, Gao ZH, Zhang JY, Zong CW, Qiao YS, Zhang Z (2010) Characterization of a new dehydration responsive element binding factor in central arctic cowberry. Plant Cell Tiss Organ Cult 101:211–219

    Article  CAS  Google Scholar 

  • Wei Q, Guo YJ, Cao HM, Kuai BK (2010) Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tiss Organ Cult. doi: 10.1007/s11240-010-9869-3

  • Wu Y, Ding N, Zhao X, Zhao M, Chang Z, Liu J, Zhang L (2007) Molecular characterization of PeSOS1: the putative Na+/H+ antiporter of Populus euphratica. Plant Mol Biol 65:1–11

    Article  PubMed  CAS  Google Scholar 

  • Xiong LM, Zhu JK (2002) Salt tolerance. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–22

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular response and the tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • Yeo ER (1998) Molecular biology of salt tolerance in the context of whole plant physiology. J Exp Bot 49:915–929

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    PubMed  CAS  Google Scholar 

  • Zhang L, Ma XL, Zhang Q, Ma CL, Wang PP, Sun YF, Zhao YX, Zhang H (2001) Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library. Gene 267:193–200

    Article  PubMed  CAS  Google Scholar 

  • Zhou JM, Tang XY, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. Eur Mol Biol Organ J 16:3207

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Missions, Egypt for funding this work and the University of Sheffield, UK for hosting the work. We also thank Dr. Robert Malinowski for helping with the molecular analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reham M. Nada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khedr, A.H.A., Serag, M.S., Nemat-Alla, M.M. et al. A DREB gene from the xero-halophyte Atriplex halimus is induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues. Plant Cell Tiss Organ Cult 106, 191–206 (2011). https://doi.org/10.1007/s11240-010-9906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9906-2

Keywords

Navigation