Skip to main content
Log in

Stimulation of the proline cycle and anthraquinone accumulation in Rubia tinctorum cell suspension cultures in the presence of glutamate and two proline analogs

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Anthraquinone biosynthesis in Rubia tinctorum L. involves different metabolic routes. Chorismic acid, the end-product of the shikimate pathway, becomes the branch point between primary and secondary metabolism. It has been proposed that the proline cycle could be coupled with the pentose phosphate pathway (PPP), since the NADP+ generated by proline reduction from glutamate could act as a cofactor of the first enzymes of the PPP. This pathway generates erythrose-4-phosphate, the substrate of the shikimate pathway. The aim of the present work was to study the effect of the addition of glutamate and two proline analogs, azetidine-2-carboxylic acid and thiazolidine-4-carboxylic acid (T4C), on the PPP, the proline cycle, and anthraquinone production in R. tinctorum cell suspension cultures. The addition of 5 mM of glutamate enhanced both anthraquinone (up to 30%) and total phenolic content (12%), which correlated well with proline accumulation. Only the addition of 200 μM of T4C resulted in an increase in anthraquinone production, which was accompanied by a rise in the proline content. Neither the addition of glutamate nor proline analogs resulted in the induction of PPP, so this route was not a limiting factor as a carbon donor to the shikimate pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Amier H, Mansour BM, Toaima N, Korus RA, Shetty K (1999) Tissue culture based screening for selection of high biomass and phenolic producing clonal lines of lavender using pseudomonas and azetidine-2-carboxylate. J Agric Food Chem 47(7):2937–2943. doi:10.1021/jf9813889

    Article  PubMed  CAS  Google Scholar 

  • Armero J, Requejo R, Jorrín J, López-Valbuena R, Tena M (2001) Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant Physiol Biochem 39(9):785–795. doi:10.1016/S0981-9428(01)01299-2

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Borroto J, Coll J, Rivas M, Blanco M, Concepción O, Tandrón YA, Hernández M, Trujillo R (2008) Anthraquinones from in vitro root culture of Morinda royoc L. Plant Cell Tiss Organ Cult 94:181–187. doi:10.1007/s11240-008-9403-z

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cheng DM, Yousef GG, Grace MH, Rogers RB, Gorelick-Feldman J, Raskin I, Lila MA (2008) In vitro production of metabolism-enhancing phytoecdysteroids from Ajuga turkestanica. Plant Cell Tiss Organ Cult 93:73–83. doi:10.1007/s11240-008-9345-5

    Article  CAS  Google Scholar 

  • Derksen GCH, van Beek TA (2002) Rubia tinctorum L. In: Rahman A (ed) Studies in natural product chemistry, vol 26. Elsevier Science Publishers, Amsterdam, pp 629–684

    Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2010) InfoStat versión 2010. Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  • Elthon TE, Stewart CR (1984) Effects of the proline analog l-thiazolidine-4-carboxylic acid on proline metabolism. Plant Physiol 74(2):213–218

    Article  PubMed  CAS  Google Scholar 

  • Han Y-S, Van der Heijden R, Verpoorte R (2001) Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell Tiss Organ Cult 67(3):201–220. doi:10.1023/A:1012758922713

    Article  CAS  Google Scholar 

  • Hanchinal VM, Survase SA, Sawant SK, Annapure US (2008) Response surface methodology in media optimization for production of β-carotene from Daucus carota. Plant Cell Tiss Organ Cult 93:123–132. doi:10.1007/s11240-008-9350-8

    Article  CAS  Google Scholar 

  • He D, Chen B, Tian Q, Yao S (2009) Simultaneous determination of five anthraquinones in medicinal plants and pharmaceutical preparations by HPLC with fluorescence detection. J Pharm Biomed Anal 49(4):1123–1127. doi:10.1016/j.jpba.2009.02.014

    Article  PubMed  CAS  Google Scholar 

  • Koblitz H (1988) Anthraquinones. In: Constabel F, Vasil I (eds) Cell culture and somatic cell genetics of plants, vol 5. Academic Press, San Diego, pp 113–142

    Google Scholar 

  • Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Organ Cult 103:333–342. doi:10.1007/s11240-010-9785-6

    Article  CAS  Google Scholar 

  • Krolicka A, Szpitter A, Stawujak K, Baranski R, Gwizdek-Wisniewska A, Skrzypczak A, Kaminski M, Lojkowska E (2010) Teratomas of Drosera capensis var. alba as a source of naphthoquinone: ramentaceone. Plant Cell Tiss Organ Cult 103:285–292. doi:10.1007/s11240-010-9778-5

    Article  CAS  Google Scholar 

  • Moreno PRH, van der Heijden R, Verpoorte R (1994) Elicitor-mediated induction of isochorismate synthase and accumulation of 2,3-dihydroxy benzoic acid in Catharanthus roseus cell suspension and shoot cultures. Plant Cell Rep 14(2–3):188–191. doi:10.1007/BF00233788

    CAS  Google Scholar 

  • Nakanishi F, Nagasawa Y, Kabaya Y, Sekimoto H, Shimomura K (2005) Characterization of lucidin formation in Rubia tinctorum L. Plant Physiol Biochem 43(10–11):921–928. doi:10.1016/j.plaphy.2005.08.005

    Article  PubMed  CAS  Google Scholar 

  • Perassolo M, Quevedo C, Busto V, Ianone F, Giulietti AM, Rodríguez Talou J (2007) Enhance of anthraquinone production by effect of proline and aminoindan-2-phosphonic acid in Rubia tinctorum suspension cultures. Enzyme Microb Technol 41(1–2):181–185. doi:10.1016/j.enzmictec.2007.01.004

    Article  CAS  Google Scholar 

  • Schulte U, El-Shagi H, Zenk MH (1984) Optimization of 19 Rubiaceae species in cell culture for the production of anthraquinones. Plant Cell Rep 3(2):51–54. doi:10.1007/BF00270970

    Article  CAS  Google Scholar 

  • Shetty K, Wahlqvist ML (2004) A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Asia Pac J Clin Nutr 13(1):1–24

    PubMed  CAS  Google Scholar 

  • Shetty P, Atallah MT, Shetty K (2003) Stimulation of total phenolics, L-DOPA and antioxidant activity through proline-linked pentose phosphate pathway in response to proline and its analogue in germinating fava beans (Vicia faba). Process Biochem 38(12):1707–1717. doi:10.1016/S0032-9592(02)00257-1

    Article  CAS  Google Scholar 

  • Sidwa-Gorycka M, Krolicka A, Orlita A, Malinski E, Golebiowski M, Kumirska J, Chromik A, Biskup E, Stepnowski P, Lojkowska E (2009) Genetic transformation of Ruta graveolens L. by Agrobacterium rhizogenes: hairy root cultures a promising approach for production of coumarins and furanocoumarins. Plant Cell Tiss Organ Cult 97:59–69. doi:10.1007/s11240-009-9498-x

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97. doi:10.1016/j.tplants.2009.11.009

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tarmizi AH, Marziah M (2000) Studies towards understanding proline accumulation in oil palm (Elaeis guineensis Jacq.) polyembryogenic cultures. J Oil Palm Res 12(1):8–13

    CAS  Google Scholar 

  • Vasconsuelo A, Giulietti AM, Picotto G, Rodríguez Talou J, Boland R (2003) Involvement of the PLC/PKC pathway in Chitosan-induced anthraquinone production by Rubia tinctorum L. cell cultures. Plant Sci 165(2):429–436. doi:10.1016/S0168-9452(03)00208-5

    Article  CAS  Google Scholar 

  • Wijnsma R, Verpoorte R (1986) Anthraquinones in the Rubiaceae. In: Herz W, Grisebach H, Kirby GW, Tamm Chr (eds) Progress in the chemistry of organic natural products, vol 49. Springer, Vienna, pp 79–119

    Google Scholar 

  • Zucker M (1969) Induction of phenylalanine ammonia-lyase in Xanthium leaf disks. Photosynthetic requirement and effect of daylength. Plant Physiol 44(6):912–922

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PICT 14-15112 and 14-33166, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, and by grant UBACyT B111, Universidad de Buenos Aires. J.R.T. and A.M.G. are researchers from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. M.P. and C.V.Q. are fellows from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Rodríguez Talou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perassolo, M., Quevedo, C.V., Giulietti, A.M. et al. Stimulation of the proline cycle and anthraquinone accumulation in Rubia tinctorum cell suspension cultures in the presence of glutamate and two proline analogs. Plant Cell Tiss Organ Cult 106, 153–159 (2011). https://doi.org/10.1007/s11240-010-9903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9903-5

Keywords

Navigation