Skip to main content
Log in

Cloning and characterization of a DCEIN2 gene responsive to ethylene and sucrose in cut flower carnation

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Carnation (Dianthus caryophyllus L.) is an important ornamental crop and serves as a model system for investigating ethylene-sensitive flower senescence. EIN2 (ethylene insensitive 2) is a central component of the ethylene signal transduction pathway in plants, but the transcriptional regulation of the EIN2 gene in response to ethylene has not yet been elucidated. We identified a cDNA clone encoding a putative EIN2-like protein (DCEIN2) from total RNA isolated from senescing carnation petals using reverse transcription-PCR and rapid amplification of cDNA ends procedures. The cDNA contained an open reading frame of 3828 bp corresponding to 1275 amino acids. The northern blot results indicated that DCEIN2 expression in both the petals and ovaries was enhanced by treatment with exogenous ethylene and sugar, respectively, and was inhibited by silver thiosulfate. In the carnation vegetative tissues, mRNAs for DCEIN2 were present in the leaves and stems, but they were not detected in the roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CTR:

Constitutive triple response

EIL:

Ethylene-insensitive3-like

EIN:

Ethylene insensitive

ERF:

Ethylene-responsive element-binding factor

ERS:

Ethylene response sensor

ETP:

EIN2 targeting protein

ETR:

Ethylene resistant

RTE1:

Reversion-to-ethylene sensitivity1

References

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Arenas-Huertero F, Arroyo-Becerra A, Zhou L, Sheen J, León P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    PubMed  CAS  Google Scholar 

  • Bisson MM, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424:1–6

    Article  PubMed  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE 3 and related proteins. Cell 89:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Charng YY, Sun CW, Yan SL, Chou SJ, Chen YR, Yang SF (1997) cDNA sequence of a putative ethylene receptor from carnation petals (Accession No. AF016250) (PGR97-144). Plant Physiol 115:863

    Article  Google Scholar 

  • Clark DG, Richards C, Hilioti Z, Lind-Iversen S, Brown K (1997) Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium hortorum L.H. Bailey). Plant Mol Biol 34:855–865

    Article  PubMed  CAS  Google Scholar 

  • Dias LLC, Santa-Catarina C, Monteiro DM, Barros RS, Floh EIS, Otoni WC (2009) Ethylene and polyamine production patterns during in vitro shoot organogenesis of two passion fruit species as affected by polyamines and their inhibitor. Plant Cell Tissue Organ Cult 99:199–208

    Article  CAS  Google Scholar 

  • Dong CH, Rivarola M, Resnick JS, Maggin BD, Chang C (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signalling. Plant J 53:275–286

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Young TE (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 271:267–281

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278:34725–34732

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-offunction mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15:2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Iordachescu M, Verlinden S (2005) Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. J Exp Bot 56:2011–2018

    Article  PubMed  CAS  Google Scholar 

  • Jun SH, Han MJ, Lee S (2004) OsEIN2 is a positive component in ethylene signaling in rice. Plant Cell Physiol 45:281–289

    Article  PubMed  CAS  Google Scholar 

  • Kakhki AM, Shahriari F, Bahrami AR, Gray J (2009) Expression of EIN2 gene in petunia flowers is down-regulated during glucose treatment. Hortic Environ Biotechnol 50:247–252

    CAS  Google Scholar 

  • Karami O, Deljou A, Kordestani GK (2008) Secondary somatic embryogenesis of carnation (Dianthus caryophyllus L.). Plant Cell Tissue Organ Cult 92:273–280

    Article  Google Scholar 

  • Kieber JJ (1997) The ethylene response pathway in Arabidopsis. Annu Rev Plant Physiol Mol Biol 48:277–296

    Article  CAS  Google Scholar 

  • Kieber J, Rothenberg M, Roman G (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes member of the Raffamily of protein kinase. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Lavee S, Parnes A, Avidan N (2010) Involvement of ethylene in growth induction of stationary. Plant Cell Tissue Organ Cult 103:123–129

    Article  CAS  Google Scholar 

  • Ma N, Tan H, Liu X, Dai F, Jia W, Luo Y, Gao J (2006) Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. J Exp Bot 57:2763–2773

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Dilley D (1976) Effect of sucrose on response of cut carnation flowers to kinetin, ethylene and abscisic acid. J Am Soc Hortic Sci 101:583–585

    CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nagata M, Tanikawa N, Onozaki T, Mori H (2000) Ethylene receptor gene (ETR) homolog from carnation (in Japanese). J Jpn Soc Hortic Sci 69(1):407

    Google Scholar 

  • Nichols R (1973) Senescence and sugar status of the cut flower. Acta Hortic 41:21–27

    Google Scholar 

  • O’Neill SD, Nadeau JA, Zhang XS, Bui AQ, Halevy AH (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5:419–432

    Article  PubMed  Google Scholar 

  • Ptak A, El Tahchy A, Wyzgolik G, Henry M, Laurain-Mattar D (2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tissue Organ Cult 102:61–67

    Article  CAS  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23:512–521

    Article  PubMed  CAS  Google Scholar 

  • Raffeiner B, Serek M, Winkelmann T (2009) Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1–1. Plant Cell Tissue Organ Cult 98:125–134

    Article  CAS  Google Scholar 

  • Reid MS, Evans RY, Dodge LL, Mor Y (1989) Ethylene and silver thiosulphate influence opening of cut rose flowers. J Am Soc Hortic Sci 114:436–440

    CAS  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103:7917–7922

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Satoh S, Yoshioka T (1998) A cDNA encoding a putative ethylene receptor related to petal senescence in carnation (Dianthus caryophyllus L.) flowers (accession no. AF034770) (PGR98-019). Plant Physiol 116:867

    Google Scholar 

  • Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S (2002) Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J Exp Bot 53:399–406

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136:2900–2912

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Mol Biol 51:49–81

    Article  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao QM, Ecker JR (1998) Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG (2004) Is petal senescence due to sugar starvation? Plant Physiol 134:35–42

    Article  PubMed  Google Scholar 

  • Varma Penmetsa R, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    Article  PubMed  Google Scholar 

  • Veen H (1983) Silver thiosulphate: an experimental tool in plant science. Sci Hortic (Amsterdam) 20:211–224

    Article  CAS  Google Scholar 

  • Verlinden S, Garcia JJ (2004) Sucrose loading decreases ethylene responsiveness in carnation (Dianthus caryophyllus cv. White Sim) petals. Postharvest Biol Technol 31:305–312

    Article  CAS  Google Scholar 

  • Waki K, Shibuya K, Yoshioka T, Hashiba T, Satoh S (2001) Cloning of a cDNA encoding EIN3-like protein DC-EIL1 and decrease in its mRNA level during senescence in carnation flower tissues. J Exp Bot 52:377–379

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64:633–644

    Article  PubMed  CAS  Google Scholar 

  • Woltering EJ, Van Doorn WG (1988) Role of ethylene in senescence of petals—morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    Article  CAS  Google Scholar 

  • Zhu HL, Zhu BZ, Shao Y, Wang XG, Lin XJ, Xie YH, Li YC, Gao HY, Luo YB (2006) Tomato fruit development and ripening Are altered by the silencing of LeEIN2 gene. J Integr Plant Biol 48:1478–1485

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (30800758 and 30972410), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and Fok Ying Tung Education Foundation (104031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixun Yu.

Additional information

Zhaodi Fu and Huinan Wang authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Z., Wang, H., Liu, J. et al. Cloning and characterization of a DCEIN2 gene responsive to ethylene and sucrose in cut flower carnation. Plant Cell Tiss Organ Cult 105, 447–455 (2011). https://doi.org/10.1007/s11240-010-9886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9886-2

Keywords

Navigation