Skip to main content

Advertisement

Log in

A 40-bp A/T-rich repressor element involved in organ-dependent transcriptional regulation of ZmGLU1

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Maize β-glucosidase (ZmGLU1) hydrolyzes cytokinin conjugates to release free cytokinins, and regulation of its expression is essential to control cytokinin homeostasis during plant growth and development. Although the promoter of ZmGLU1 gene was found to confer its organ-dependent expression, the underlying mechanism remained to be uncovered. In this study, by promoter deletion assay, a 40-bp A/T-rich sequence in ZmGLU1 promoter region ranging from −798 to −758 (T40) was identified as mediating the repression of promoter activity in seeds and shoot but not in root. Additional fusion of T40 upstream of the constitutive cauliflower mosaic virus 35S promoter (35S) suppressed 35S-driven gene expression in shoot and seeds. Electrophoretic mobility shift assay further revealed a specific interaction between T40 and an unknown binding protein in seeds and shoot but not in root. The negative correlation between ZmGLU1 gene expression/promoter activity and the intensity of T40–protein interaction suggests that T40 acts as a repressor cis-element involved in ZmGLU1 organ-dependent expression. Furthermore, this result provides a new A/T-rich sequence exhibiting transcriptional repression in higher plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ZmGLU1:

Maize β-glucosidase

ZmGLU1p :

ZmGLU1 promoter

EMSA:

Electrophoretic mobility shift assay

qPCR:

Quantitative RT-PCR

PIPES:

Piperazine-N,N′-bis(2-ethanesulfonic acid)

HEPES-N-2:

Hydroxyethylpiperazine-N′-2-ethanesulfonic acid

ppt:

Phosphinothricin

35S :

Cauliflower mosaic virus 35S promoter

References

  • Angulo A, Kerry D, Huang H, Borst EM, Razinsky A, Wu J, Hobom U, Messerle M, Ghazal P (2000) Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J Virol 74:2826–2839

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Landsman D (1998) AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 26:4413–4421

    Article  PubMed  CAS  Google Scholar 

  • Beason K, Acuff C, Steinhelper M, Elton T (1999) An A/T-rich cis-element is essential for rat angiotensin II type 1A receptor transcription in vascular smooth muscle cells. Biochim Biophys Acta 1444:25–34

    PubMed  CAS  Google Scholar 

  • Berry FB, Miura Y, Mihara K, Kaspar P, Sakata N, Hashimoto-Tamaoki T, Tamaoki T (2001) Positive and negative regulation of myogenic differentiation of C2C12 cells by isoforms of the multiple homeodomain zinc finger transcription factor ATBF1. J Biol Chem 276:25057–25065

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262:1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Bustin M (1999) Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol 19:5237–5246

    PubMed  CAS  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  • Bustos MM, Guiltinan MJ, Jordano J, Begum D, Kalkan FA, Hall TC (1989) Regulation of beta-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a French bean beta-phaseolin gene. Plant Cell 1:839–853

    Article  PubMed  CAS  Google Scholar 

  • Buzeli RA, Cascardo JC, Rodrigues LA, Andrade MO, Almeida RS, Loureiro ME, Otoni WC, Fontes EP (2002) Tissue-specific regulation of BiP genes: a cis-acting regulatory domain is required for BiP promoter activity in plant meristems. Plant Mol Biol 50:757–771

    Article  PubMed  CAS  Google Scholar 

  • Camasamudram V, Fang JK, Avadhani NG (2003) Transcription termination at the mouse mitochondrial H-strand promoter distal site requires an A/T rich sequence motif and sequence specific DNA binding proteins. Eur J Biochem 270:1128–1140

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Fang M, Majumder A, Wu HY (2001) A 72-base pair AT-rich DNA sequence element functions as a bacterial gene silencer. J Biol Chem 276:9478–9485

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka E, Ingersoll JC, Gurley WB (1992) AT-rich promoter elements of soybean heat shock gene Gmhsp17.5E bind two distinct sets of nuclear proteins in vitro. Plant Mol Biol 19:985–1000

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  • Delaney SK, Orford SJ, Martin-Harris M, Timmis JN (2007) The fiber specificity of the cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-hook transcription factor GhAT1. Plant Cell Physiol 48:1426–1437

    Article  PubMed  CAS  Google Scholar 

  • Esen A (1993) Tissue-specific expression of beta-glucosidase. Maize Genetics Cooperation Newsletter 67

  • Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Freeman J, Oliver JE, Pineda M (1990) Nuclear factors interact with conserved A/T-rich elements upstream of a nodule-enhanced glutamine synthetase gene from French bean. Plant Cell 2:925–939

    Article  PubMed  CAS  Google Scholar 

  • Fried MG (1989) Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10:366–376

    Article  PubMed  CAS  Google Scholar 

  • Gu R, Zhao L, Zhang Y, Chen X, Bao J, Zhao J, Wang Z, Fu J, Liu T, Wang J, Wang G (2006) Isolation of a maize beta-glucosidase gene promoter and characterization of its activity in transgenic tobacco. Plant Cell Rep 25:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Guan JC, Yeh CH, Lin YP, Ke YT, Chen MT, You JW, Liu YH, Lu CA, Wu SJ, Lin CY (2010) A 9 bp cis-element in the promoters of class I small heat shock protein genes on chromosome 3 in rice mediates L-azetidine-2-carboxylic acid and heat shock responses. J Exp Bot. doi:10.1093/jxb/erq230

  • Hamoen LW, Van Werkhoven AF, Bijlsma JJ, Dubnau D, Venema G (1998) The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev 12:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Horsch R, Fry J, Hoffman N, Eicholtz D, Rogers S, Fraley R (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Inaba T, Nagano Y, Reid JB, Sasaki Y (2000) DE1, a 12-base pair cis-regulatory element sufficient to confer dark-inducible and light down-regulated expression to a minimal promoter in pea. J Biol Chem 275:19723–19727

    Article  PubMed  CAS  Google Scholar 

  • Kim MK, Lesoon-Wood LA, Weintraub BD, Chung JH (1996) A soluble transcription factor, Oct-1, is also found in the insoluble nucleoli matrix and possesses silencing activity in its alanine-rich domain. Mol Cell Biol 16:4366–4377

    PubMed  CAS  Google Scholar 

  • Kristoffersen P, Brzobohaty B, Hohfeld I, Bako L, Melkonian M, Palme K (2000) Developmental regulation of the maize Zm-p60.1 gene encoding a beta-glucosidase located to plastids. Planta 210:407–415

    Article  PubMed  CAS  Google Scholar 

  • Lai C, Xiong J, Li X, Qin X (2009) A 43-bp A/T-rich element upstream of the kinesin gene AtKP1 promoter functions as a silencer in Arabidopsis. Plant Cell Rep 28:851–860

    Article  PubMed  CAS  Google Scholar 

  • Laursen NB, Larsen K, Knudsen JY, Hoffmann HJ, Poulsen C, Marcker KA, Jensen EO (1994) A protein binding AT-rich sequence in the soybean leghemoglobin c3 promoter is a general cis element that requires proximal DNA elements to stimulate transcription. Plant Cell 6:659–668

    Article  PubMed  CAS  Google Scholar 

  • Nagano Y, Furuhashi H, Inaba T, Sasaki Y (2001) A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. Nucleic Acids Res 29:4097–4105

    Article  PubMed  CAS  Google Scholar 

  • Nikus J, Jonsson L (1999) Tissue localization of β-glucosidase in rye, maize and wheat seedlings. Physiol Plant 107:373–378

    Article  CAS  Google Scholar 

  • Nisius A (1988) The stromacentre in Avena plastids: an aggregation of β-glucosidase responsible for the activation of oat-leaf saponins. Planta 173:474–481

    Article  CAS  Google Scholar 

  • Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94:401–405

    Article  PubMed  CAS  Google Scholar 

  • Pyo H, Demura T, Fukuda H (2007) TERE; a novel cis-element responsible for a coordinated expression of genes related to programmed cell death and secondary wall formation during differentiation of tracheary elements. Plant J 51:955–965

    Article  PubMed  CAS  Google Scholar 

  • Sahi SV, Chilton MD, Chilton WS (1990) Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 87:3879–3883

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Lamkemeyer T, Schutzenmeister A, Madlung J, Sakai H, Piepho HP, Nordheim A, Hochholdinger F (2010) Specification of cortical parenchyma and stele of maize (Zea mays L.) primary roots by asymmetric levels of auxin, cytokinin and cytokinin-regulated proteins. Plant Physiol 152:4–18

    Article  PubMed  CAS  Google Scholar 

  • Sandhu JS, Webster CI, Gray JC (1998) A/T-rich sequences act as quantitative enhancers of gene expression in transgenic tobacco and potato plants. Plant Mol Biol 37:885–896

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2006) Transformation of Agrobacterium using the freeze-thaw method. Cold Spring Harb Protoc. doi:10.1101/pdb.prot4666

  • Yamashita K, Sato A, Asashima M, Wang PC, Nishinakamura R (2007) Mouse homolog of SALL1, a causative gene for Townes-Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc finger domains. Genes Cells 12:171–182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support from the National Natural Science Foundation of China (No. 30700134) and Ministry of Agriculture of China (2009ZX08009-131B). We also thank Prof. F.S. Zhang (China Agricultural University) for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riliang Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Yuan, L. & Gu, R. A 40-bp A/T-rich repressor element involved in organ-dependent transcriptional regulation of ZmGLU1 . Plant Cell Tiss Organ Cult 105, 291–298 (2011). https://doi.org/10.1007/s11240-010-9867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9867-5

Keywords

Navigation