Skip to main content
Log in

Developing an Agrobacterium tumefaciens-mediated genetic transformation for a selenium-hyperaccumulator Astragalus racemosus

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Agrobacteriumtumefaciens strain LBA4404 containing the plasmid pBI121, carrying the reporter gene uidA and the kanamycin resistance gene nptII, was used for gene transfer experiments in selenium (Se)-hyperaccumulator Astragalus racemosus. The effects of kanamycin on cell growth and division and acetosyringone on transformation efficiency were evaluated. The optimal concentration of kanamycin that could effectively inhibit cell growth and division in non-transgenic tissues was 50 mg l−1 and thus all putative transgenic plants were obtained on induction medium containing 50 mg l−1 kanamycin. The verification of transformants was achieved by both histochemical GUS assay and PCR amplification of nptII gene. Southern blot analysis was performed to further confirm that transgene nptII was stably integrated into the A. racemosus genome. A transformation frequency of approximately 10% was achieved using this protocol, but no beneficial effect from the addition of acetosyringone (50 μM) was observed. This transformation system will be a useful tool for future studies of genes responsible for Se-accumulation in A. racemosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CPPU:

N-(2-chloro-4-pyridyl)-N′-phenylurea

GUS:

β-Glucuronidase

nptII:

Neomycin phosphotransferase II

NAA:

α-Naphthaleneacetic acid

MS:

Murashige and Skoog’s medium

PCR:

Polymerase chain reaction

References

  • Berken A, Mulholland MM, LeDuc DL, Terry N (2002) Genetic engineering of plants to enhance selenium phytoremediation. Crit Rev Plant Sci 21:567–582

    Article  CAS  Google Scholar 

  • Birringer M, Pilawa S, Flohe L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  PubMed  CAS  Google Scholar 

  • Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium-tolerant Astragalus species. Plant Physiol 67:1051–1053

    Article  PubMed  CAS  Google Scholar 

  • Carvalho KM, Gallardo-Williams MT, Benson RF, Martin DF (2003) Effects of selenium supplementation on four agricultural crops. J Agric Food Chem 51:704–709

    Article  PubMed  CAS  Google Scholar 

  • Chawla HS (2002) Introduction to plant biotechnology, 2nd edn. Science Publishers, Plymouth

    Google Scholar 

  • Cho HJ, Widholm JM (2002) Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus. Plant Cell Tissue Organ Cult 69:259–269

    Article  CAS  Google Scholar 

  • Cho HJ, Widholm JM, Tanaka N, Nakanishi Y, Murooka Y (1998) Agrobacterium rhizogenes-mediated transformation and regeneration of the legume Astragalus sinicus (Chinese milk vetch). Plant Sci 138:53–65

    Article  CAS  Google Scholar 

  • Davis AM (1972) Selenium accumulation in Astragalus species. Agron J 64:751–754

    Article  CAS  Google Scholar 

  • Duffield-Lillico AJ, Reid ME, Turnbull BW, Combs GF Jr, Slate EH, Fischbach LA, Marshall JR, Clark LC (2002) Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial. Cancer Epidemiol Biomarkers Prev 11:630–639

    PubMed  CAS  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11

    Article  PubMed  Google Scholar 

  • Finley JW (2005) Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids, glucosinolates, polyphenols and selenocompounds. Ann Bot (Lond) 95:1075–1096

    Article  CAS  Google Scholar 

  • Gartner R, Gasnier BCH, Dietrich JW, Krebs B, Angstwurm MWA (2002) Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab 87:1687–1691

    Article  PubMed  CAS  Google Scholar 

  • Godwin I, Todd D, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  Google Scholar 

  • Horsch RB, Fry J, Hoffman N, Neidermeyer J, Rogers SG, Fraley RT (1988) Leaf disc transformation. In: Gelvin SB, Schilperoot RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–9

    Google Scholar 

  • Hung CY, Xie JH (2008) Development of an efficient plant regeneration system for the selenium-hyperaccumulator Astragalus recemosus and the nonaccumulator Astragalus canadensis. HortScience 43:2138–2142

    Google Scholar 

  • Imam SZ, Ali SF (2000) Selenium, an antioxidant, attenuates methamphetamine-induced dopaminergic toxicity and peroxy-nitrite generation. Brain Res 855:186–191

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Larsen PR, Berry MJ (1995) Nutritional and hormonal regulation of thyroid hormone deiodinases. Annu Rev Nutr 15:323–352

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neuhierl B, Thanbichler M, Lottspeich F, Bock A (1999) A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414

    Article  PubMed  CAS  Google Scholar 

  • Owens LD, Smigocki AN (1988) Transformation of soybean cells using mixed strains of Agrobacterium tumefaciens and phenolic compounds. Plant Physiol 88:570–573

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium, geobotany, biochemistry, toxicity, and nutrition. Academic press, New York

    Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  • Schwartz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 70:3292–3293

    Article  Google Scholar 

  • Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298

    Article  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005a) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  PubMed  CAS  Google Scholar 

  • Sors TG, Ellis DR, Na GN, lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005b) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium-tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Tamura T, Stadtman TC (1996) A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci USA 93:1006–1011

    Article  PubMed  CAS  Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  • Trelease SF, Trelease HM (1939) Physiological differentiation in Austragalus with reference to selenium. Am J Bot 26:530–535

    Article  CAS  Google Scholar 

  • Van Huysen T, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic Brassica juncea overexpressing ATP sulfurylase or cystathionine-gamma-synthase. Int J Phytoremediation 6:111–118

    Article  PubMed  CAS  Google Scholar 

  • Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    PubMed  CAS  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  PubMed  CAS  Google Scholar 

  • Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230

    Article  PubMed  CAS  Google Scholar 

  • Xie JH, Lu J, Zhuang JY, Lin HX, Qian HR, Gao MW, Zheng KL (1997) Identifying different types of dedifferentiated microspores from indica-japonica F1 hybrids with subspecies differentiating RFLP probes in rice. Theor Appl Genet 94:34–38

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Chen L, Hu Q, Pan G (2003) Effect of the application of selenium on selenium content of soybean and its products. Biol Trace Elem Res 93:249–256

    Article  PubMed  CAS  Google Scholar 

  • Yu SY, Zhu YJ, Li WG (1997) Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong. Biol Trace Elem Res 56:117–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Biotechnology Research Grant (2007-BRG-1223) from the North Carolina Biotechnology Center, a United States Department of Agriculture—Cooperative State Research, Education, and Extension Service grant (2009-35318-05032) and a startup fund from the Golden LEAF Foundation to the Biomanufacturing Research Institute & Technology Enterprise (BRITE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darlington, D.E., Hung, CY. & Xie, J. Developing an Agrobacterium tumefaciens-mediated genetic transformation for a selenium-hyperaccumulator Astragalus racemosus . Plant Cell Tiss Organ Cult 99, 157–165 (2009). https://doi.org/10.1007/s11240-009-9588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9588-9

Keywords

Navigation