Skip to main content
Log in

Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Somaclonal variation detected in plant tissues grown in vitro can be heritable, and thus provides an opportunity for plant breeders and geneticists to generate novel variants. However, incidence of somaclonal variation is problematic for plant transformation efforts and for micropropagation of true-to-type clones. The origin of somaclonal variation is still not well understood. In this study, 120 SSR markers, distributed across all 12 chromosomes of rice, have been used to analyze eight somaclonal mutants derived from seven different cultivars. Of these, 13 SSRs have detected polymorphisms between the bacterial blight resistant mutant HX-3 and its wild-type Minghui 63. While, ten SSRs have revealed differences between a purple sheath mutant, Z418, and the wild-type C418. None of the SSRs have been able to distinguish between tall and dwarf mutants, 02428h and A418, and their wild-type counterparts, respectively. Interestingly, six SSRs have identified differences in at least three mutant lines and their corresponding wild-type genotypes. These results have suggested that some SSR markers in the rice genome may detect higher numbers of polymorphisms than others. In addition, a transposon display (TD) of five active rice transposons, Tos17, Karma, mPing, nDart and dTok, has been conducted to evaluate DNA changes of eight mutants. Some mutant lines, such as HX-3 and Z418, have exhibited differences from their corresponding wild-type genotypes in TDs with two transposons. This has indicated that new insertions of transposons are involved in somaclonal variation derived from tissue culture. Taken together, these results suggest that multiple molecular mechanisms are responsible for somaclonal variation detected in tissue culture of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SSR:

Simple sequence repeat

TD:

Transposon display

RFLP:

Restriction fragment length polymorphism

RAPD:

Random amplified polymorphic DNA

AFLP:

Amplified fragment length polymorphism

References

  • Adkins SW, Kunanuvatchaidach R, Godwin ID (1995) Somaclonal variation in rice—drought tolerance and other agronomic characters. Aust J Bot 43:201–209. doi:10.1071/BT9950201

    Article  Google Scholar 

  • Alves E, Ballesteros I, Linacero R, Vázquez AM (2005) RYS1, a foldback transposon, is activated by tissue culture and shows preferential insertion points into the rye genome. Theor Appl Genet 111:431–436. doi:10.1007/s00122-005-2013-9

    Article  PubMed  CAS  Google Scholar 

  • Arencibia A, Gentinetta E, Cuzzoni E, Castiglione S, Kohli A, Vain P, Leech M, Christou P, Sala F (1998) Molecular analysis of the genome of transgenic rice (Oryza sativa L.) plants produced via particle bombardment or intact cell electroporation. Mol Breed 4:99–109. doi:10.1023/A:1009627409668

    Article  CAS  Google Scholar 

  • Arencibia A, Carmona ER, Cornide MT, Castiglione S, O’relly J, Chinea A, Oramai P, Sala F (1999) Somaclonal variation in insect-resistance transgenic sugarcane (Saccharum hibrid) plants produced by cell electroporation. Transgenic Res 8:349–360. doi:10.1023/A:1008900230144

    Article  CAS  Google Scholar 

  • Bao PH, Granata S, Castiglione S, Wang G, Giordani C, Cuzzoni E, Damiani G, Bandi C, Datta SK, Datta K, Potrykus I, Callegarin A, Sala F (1996) Evidence for genomic changes in transgenic rice (Oryza sativa L.) recovered from protoplasts. Transgenic Res 5:97–103. doi:10.1007/BF01969427

    Article  PubMed  CAS  Google Scholar 

  • Barros EG, Tingey S, Rafalski JA (2000) Sequence characterization of hypervariable regions in the soybean genome: leucine-rich repeats and simple sequence repeats. Genet Mol Biol 23:411–415. doi:10.1590/S1415-47572000000200029

    Article  Google Scholar 

  • Bregitzer P, Halbert SE, Lemaux PG (1998) Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96:421–425. doi:10.1007/s001220050758

    Article  Google Scholar 

  • Breiman A, Rotem-Abarbanel D, Karp A, Shaskin H (1987) Heritable somaclonal variation in wild barley (Hordeum spontaneum). Theor Appl Genet 74:1432–2242. doi:10.1007/BF00290092

    Article  Google Scholar 

  • Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR (2000) Inaugural article: the MITE family heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci USA 97:10083–10089. doi:10.1073/pnas.97.18.10083

    Article  PubMed  CAS  Google Scholar 

  • Chowdari KV, Ramakrishna W, Tamhankar SA, Hendre RR, Gupta VS, Sahasrabudhe NA, Ranjekar PK (1998) Identification of minor DNA variations in rice somaclonal variants. Plant Cell Rep 18:55–58. doi:10.1007/s002990050531

    Article  CAS  Google Scholar 

  • Dennis ES, Brettell RIS, Peacock WJ (1987) A tissue culture induced Adh1 null mutant of maize results from a single base change. Mol Gen Genet 210:181–183. doi:10.1007/BF00337777

    Article  CAS  Google Scholar 

  • Devarumath RM, Nandy S, Rani V, Marimuthu S, Muraleedharan N, Raina SN (2002) RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. assamica (Assam-India type). Plant Cell Rep 21:166–173. doi:10.1007/s00299-002-0496-2

    Article  CAS  Google Scholar 

  • Evans DA, Sharp WR (1983) Single gene mutations in tomato plants regenerated from tissue culture. Science 221:949–951. doi:10.1126/science.221.4614.949

    Article  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Kiguchi T (2005) Identification of an active transposon in intact rice plants. Mol Genet Genomics 273:150–157. doi:10.1007/s00438-005-1131-z

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hot spots in mammalian mitochondrial DNA. Genome Res 16:215–222. doi:10.1101/gr.4305906

    Article  PubMed  CAS  Google Scholar 

  • Gao DY, Xu ZG, Chen ZY, Sun LH, Sun QM, Lu F, Hu BS, Liu YF (2002) Identification of a resistance gene to bacterial blight (Xanthomonas oryzae pv. oryzae) in a somaclonal mutant HX-3 of indica rice. Yi Chuan Xue Bao 29:138–143

    PubMed  Google Scholar 

  • Gao DY, Liu AM, Zhou YH, Cheng YJ, Xiang YH, Sun LH, Zhai WX (2005) Molecular mapping of a bacterial blight resistance gene Xa-25 in rice. Yi Chuan Xue Bao 32:183–188

    PubMed  CAS  Google Scholar 

  • Godwin ID, Sangduen N, Kunanuvatchaidach R, Piperidis G, Adkins SW (1997) RAPD polymorphisms among variant and phenotypically normal rice (Oryza sativa var. indica) somaclonal progenies. Plant Cell Rep 16:320–324. doi:10.1007/BF01088289

    CAS  Google Scholar 

  • Guo WL, Wu R, Zhang YF, Liu XM, Wang HY, Gong L, Zhang ZH, Liu B (2007) Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. Plant Cell Rep 26:1297–1307. doi:10.1007/s00299-007-0320-0

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. doi:10.1046/j.1365-313X.1994.6020271

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788. doi:10.1073/pnas.93.15.7783

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53. doi:10.1126/science.1905840

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800. doi:10.1038/nature03895

    Article  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167. doi:10.1038/nature01214

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170. doi:10.1038/nature01218

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944. doi:10.1105/tpc.011809

    Article  PubMed  CAS  Google Scholar 

  • Kubis SE, Castilho AM, Vershinin AV, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79. doi:10.1023/A:1023942309092

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Scocroft WR (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi:10.1007/BF02342540

    Article  Google Scholar 

  • Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol 39:413–437. doi:10.1146/annurev.pp.39.060188.002213

    Article  Google Scholar 

  • Linacero R, Alves EF, Vázquez AM (2000) Hot spots of DNA instability revealed through the study of somaclonal variation in rye. Theor Appl Genet 100:506–511. doi:10.1007/s001220050066

    Article  CAS  Google Scholar 

  • Lutts S, Bouharmont J, Kinet JM (1999) Physiological characterisation of salt-resistant rice (Oryza sativa) somaclones. Aust J Bot 47:835–849. doi:10.1071/BT97074

    Article  Google Scholar 

  • Moon S, Jung KH, Lee DE, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, An G (2006) Identification of active transposon dTok, a member of the hAT family, in rice. Plant Cell Physiol 47:1473–1483. doi:10.1093/pcp/pcl012

    Article  PubMed  CAS  Google Scholar 

  • Muller E, Brown PTH, Harke S, Lorz H (1990) DNA variation in tissue-culture-derived rice plants. Theor Appl Genet 80:673–679. doi:10.1007/BF00224228

    Article  Google Scholar 

  • Murashige T (1974) Plant propagation through tissue culture. Annu Rev Plant Physiol 25:135–166. doi:10.1146/annurev.pp.25.060174.001031

    Article  CAS  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172. doi:10.1038/nature01219

    Article  PubMed  CAS  Google Scholar 

  • Ngezahayo F, Dong Y, Liu B (2007) Somaclonal variation at the nucleotide sequence level in rice (Oryza sativa L.) as revealed by RAPD and ISSR markers, and by pairwise sequence analysis. J Appl Genet 48:329–336

    PubMed  Google Scholar 

  • Oono K (1985) Putative homozygous mutations in regenerated plants of rice. Mol Gen Genet 198:1432–1874. doi:10.1007/BF00332926

    Article  Google Scholar 

  • Oono D, Niizeki M, Senda M, Ishikawa R, Akada S, Harada T (1999) An analysis of somaclonal variation in progenies regenerated from rice calli. Rice Genet Newsl 16:81–83

    Google Scholar 

  • Peredo EL, A’ngeles Revilla M, Arroyo-Garcı’a R (2006) Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic call. J Plant Physiol 163:1071–1079. doi:10.1016/j.jplph.2005.09

    Article  PubMed  CAS  Google Scholar 

  • Ray T, Dutta I, Saha P, Das S, Roy SC (2006) Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tissue Organ Cult 85:11–21. doi:10.1007/s11240-005-9044-4

    Article  CAS  Google Scholar 

  • Richards RI, Sutherland GR (1994) Simple repeat DNA is not replicated simply. Nat Genet 6:114–116. doi:10.1038/ng0294-114

    Article  PubMed  CAS  Google Scholar 

  • Ryan SA, Larkin PJ, Ellison FW (1987) Somaclonal variation in some agronomic and quality characters in wheat. Theor Appl Genet 74:77–82. doi:10.1007/BF00290087

    Article  Google Scholar 

  • Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78. doi:10.1186/1471-2229-8-78

    Article  PubMed  Google Scholar 

  • Smýkal P, Valledor L, Rodríguez R, Griga M (2007) Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998. doi:10.1007/s00299-007-0413-9

    Article  PubMed  Google Scholar 

  • Sun LH, Wang YF, Jiang N, Li HB (1994) A recessive tall culm somatic mutant with wide compatibility in rice (Oryza sativa L.). Acta Genetica Sin 21:67–73

    Google Scholar 

  • Takagi K, Ishikawa N, Maekawa M, Tsugane K, Iida S (2007) Transposon display for active DNA transposons in rice. Genes Genet Syst 82:109–122. doi:10.1266/ggs.82.109

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452. doi:10.1101/gr.184001

    Article  PubMed  CAS  Google Scholar 

  • Touraev A, Stoger E, Voronin V, Heberle-Bors E (1997) Plant male germ line transformation. Plant J 12:949–956. doi:10.1046/j.1365-313X.1997.12040949

    Article  CAS  Google Scholar 

  • Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57. doi:10.1111/j.1365-313X.2005.02600

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Tabei Y, Kamad H, Kayano T, Takaiwa F (1999) Detection of somaclonal variation in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep 18:520–526. doi:10.1007/s002990050615

    Article  CAS  Google Scholar 

  • Zheng KL, Castiglone S, Biasini MG, Biroli A, Morandi C, Sala F (1987) Nuclear DNA amplification in cultured cells of Oryza sativa L. Theor Appl Genet 74:65–70. doi:10.1007/BF00290085

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ning Jiang (Department of Horticulture, Michigan State University) for her support and guidance on this study. We also thank Professor Meifang Li at CAAS and Professor Changdeng Yang at CNRRI for kindly providing the rice mutants and their wildtypes. This study was supported by grant from National Natural Science Foundation of China (30471066) and the Scholarship for Overseas Training Program from the government of Jiangsu province in China to Dongying Gao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ying Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC 42 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, DY., Vallejo, V.A., He, B. et al. Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display. Plant Cell Tiss Organ Cult 98, 187–196 (2009). https://doi.org/10.1007/s11240-009-9551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9551-9

Keywords

Navigation