Skip to main content
Log in

Micropropagation of iridaceae—a review

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The Iridaceae contains many hundreds of attractive species that have been overlooked for horticultural development. The incredible variation in flower and leaf shape, size and colour suggest this little-tapped resource could offer great opportunities for developing new commercial ornamental products. Micropropagation has increasingly become a valuable tool assisting breeders to release new species and cultivars into the market more rapidly. Here we review the progress made in Iridaceae micropropagation genus by genus, and highlight the potential for future expansion in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2, 4-D:

2,4-Dichlorophenoxyacetic acid

2iP:

2-Isopentenyladenine

ABA:

Abscisic acid

BA:

N6-Benzylaminopurine

BYMV:

Bean yellow mosaic virus

GA:

Gibberellic acid

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

NAA:

α-Naphthaleneacetic acid

PAA:

Phenylacetic acid

References

  • Adediwura FJ, Kio A (2008) Antidiabetic activity of Gladiolus psittascinus in alloxan induced diabetic rats. Afr J Trad Compl Alt Med 5:154–157

    Google Scholar 

  • Aftab F, Alam M, Afrasiab H (2008) In vitro shoot multiplication and callus induction in Gladiolus hybridus Hort. Pak J Bot 40:517–522

    Google Scholar 

  • Ascough GD, Erwin JE, Van Staden J (2007) In vitro propagation of four Watsonia species. Plant Cell Tissue Organ Cult 88:135–145. doi:10.1007/s11240-006-9180-5

    Google Scholar 

  • Ascough GD, Erwin JE, Van Staden J (2008a) In vitro storage organ formation on ornamental geophytes. Hortic Rev (Am Soc Hortic Sci) 34:417–444

    CAS  Google Scholar 

  • Ascough GD, Erwin JE, Van Staden J (2008b) Effectiveness of colchicine and oryzalin at inducing polyploidy in Watsonia lepida N.E. Brown. HortScience 43:1–5

    Google Scholar 

  • Ascough GD, Erwin JE, Van Staden J (2008c) Reduced temperature, elevated sucrose, continuous light and gibberellic acid promote corm formation in Watsonia vanderspuyiae. Plant Cell Tissue Organ Cult 95:275–284

    CAS  Google Scholar 

  • Babu P, Chawla HS (2000) In vitro regeneration and Agrobacterium mediated transformation in gladiolus. J Hortic Sci Biotechnol 75:400–404

    Google Scholar 

  • Bach A (1987) The capability of in vitro regeneration of various cultivars of Freesia hybrida. Acta Hortic 212:715–718

    Google Scholar 

  • Bach A (1992) Somatic embryogenesis from zygotic embryos and meristems of Freesia hybrida. Acta Hortic 325:429–434

    Google Scholar 

  • Bach A, Pawlowska B (2006) Effect of light qualities on cultured in vitro ornamental bulbous plants. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Advances and topical issues, vol II. Global Science Books, Ltd, London. ISBN 4-903313-09-3

    Google Scholar 

  • Bach A, Malik M, Ptak A, Kedra M (2000) Light effects on ornamental microplant shoots and bulbs quality. Acta Hortic 530:173–179

    Google Scholar 

  • Bagheri A, Vesal SR (2006) Genetics, sterility, propagation and in vitro production of secondary metabolites. In: Kafi M, Koocheki A, Rashed MH, Nassiri M (eds) Saffron (Crocus sativus): production and processing. Science Publishers, Plymouth, England, pp 119–137. ISBN 157808427X

    Google Scholar 

  • Bajaj YPS, Pierik RLM (1974) Vegetative propagation of Freesia through callus cultures. Neth J Agric Sci 22:153–159

    Google Scholar 

  • Bajaj YPS, Sidhu MMS, Gill APS (1983) Some factors affecting the in vitro propagation of Gladiolus. Sci Hortic (Amsterdam) 18:269–275. doi:10.1016/0304-4238(83)90031-6

    Google Scholar 

  • Baruch E, Quak F (1966) Virus free plants of Iris ‘Wedgewood’ obtained by meristem culture. Neth J Plant Pathol 71:270–273 (Cited in Krikorian and Kann, 1986)

    Google Scholar 

  • Bhagyalakshmi N (1999) Factors influencing direct shoot regeneration from ovary explants of saffron. Plant Cell Tissue Organ Cult 58:205–211. doi:10.1023/A:1006398205936

    CAS  Google Scholar 

  • Blázquez S, Olmos E, Hernández JA, Hellín E, Fernández JA, Piqueras A (2004a) Somatic embryogenesis in saffron (Crocus sativus L.): morphological differentiation and the role of the antioxidant enzymatic system. Acta Hortic 650:261–267

    Google Scholar 

  • Blázquez S, Piqueras A, Serna M, Casas JL, Fernández JA (2004b) Somatic embryogenesis in saffron: optimisation through temporary immersion and polyamine metabolism. Acta Hortic 650:269–276

    Google Scholar 

  • Boltenkov EV, Rybin VG, Zarembo EV (2005) Flavones from callus tissue of Iris ensata. Chem Nat Compd 41:539–541. doi:10.1007/s10600-005-0200-1

    CAS  Google Scholar 

  • Brants DH (1968) A revised medium for Freesia meristem cultures. Neth J Plant Pathol 74:120–121. doi:10.1007/BF02309503

    Google Scholar 

  • Brants DH, Vermeulen H (1965) Production of virus-free Freesia by means of meristem culture. Neth J Plant Pathol 71:25–27. doi:10.1007/BF01980337

    CAS  Google Scholar 

  • Campell TB, Bower JP (2002) Gladiolus scabridus—the road to conservation and commercialisation. Acta Hortic 624:67–72

    Google Scholar 

  • Chandler SF, Lu CY (2005) Biotechnology in ornamental horticulture. In Vitro Cell Dev Biol Plant 41:591–601. doi:10.1079/IVP2005681

    Google Scholar 

  • Chandler SF, Tananka Y (2007) Genetic modification in floriculture. Crit Rev Plant Sci 26:169–197

    Google Scholar 

  • Chauvin JE, Hamann H, Cohat J, Le Nard M (1997) Selective agents and marker genes for use in genetic transformation of Gladiolus grandiflorus and Tulipa gesneriana. Acta Hortic 447:291–297

    Google Scholar 

  • Chauvin JE, Marhadour S, Cohat J, Le Nard M (1999) Effects of gelling agents on in vitro regeneration and kanamycin as a selective agent in plant transformation procedures. Plant Cell Tissue Organ Cult 58:213–217. doi:10.1023/A:1006390929364

    CAS  Google Scholar 

  • Chen S, Wang X, Zhao B, Yuan X, Wang Y (2003) Production of crocin using Crocus sativus callus by two-stage culture system. Biotechnol Lett 25:1235–1238. doi:10.1023/A:1025036729160

    PubMed  CAS  Google Scholar 

  • Chichiricco G, Caiola MG (1987) In vitro development of parthenocarpic fruits of Crocus sativus L. Plant Cell Tissue Organ Cult 11:75–78. doi:10.1007/BF00036578

    Google Scholar 

  • Choob VV, Vlassova TA, Butenko RG (1994) Callusogenesis and morphogenesis in generative organ culture of the spring-flowering species of Crocus L. Russ J Plant Physiol 41:712–716

    Google Scholar 

  • Cooke DL, WAaites WM, Leifert C (1992) Effects of Agrobacterium tumefaciens, Erwinia carotovora, Pseudomonas syringae and Xanthomonas campestris on plant tissue cultures of Aster, Cheiranthus, Delphinium, Iris and Rosa. J Plant Dis Prot 99:469–481

    Google Scholar 

  • Dantu PK, Bhojwani SS (1987) In vitro propagation and corm formation in Gladiolus. Gartenbauwissenschaft 52:90–93

    CAS  Google Scholar 

  • Dantu PK, Bhojwani SS (1995) In vitro corm formation and field evaluation of corm-derived plants of Gladiolus. Sci Hortic (Amsterdam) 61:115–129. doi:10.1016/0304-4238(94)00722-R

    Google Scholar 

  • Darvishi E, Zarghami R, Mishani CA, Omidi M (2007) Effects of different hormone treatments on nonembryogenic and embryogenic callus induction and time-term enzyme treatments on number and viability of isolated protoplasts in saffron. (Crocus sativus L.). Acta Hortic 739:279–284

    CAS  Google Scholar 

  • Davies DR, Griffiths P (1971) In vitro propagation of Freesia. Ann Rep John Innes Inst 62:45

    Google Scholar 

  • Davies DR, Helsop P (1972) In vitro propagation of Freesia. Ann Rep John Innes Inst 63:64

    Google Scholar 

  • De Bruyn MH, Ferreira DI (1992) In vitro corm production of Gladiolus dalenii and G. tristis. Plant Cell Tissue Organ Cult 31:123–128. doi:10.1007/BF00037696

    Google Scholar 

  • De Hertogh AA, Le Nard M (1993) The physiology of flower bulbs. Elsevier, Amsterdam. ISBN 978-0444874986

    Google Scholar 

  • Dickens CWS, Kelly KM, Manning JC, Van Staden J (1986) In vitro propagation of Gladiolus flanaganii. S Afr J Bot 52:485–487

    Google Scholar 

  • Ding B, Bai SH, Wu Y, Wang BK (1979) Preliminary report on tissue culture of corms of Crocus sativus. Acta Bot Sin 21:387

    Google Scholar 

  • Ding B, Bai SH, Wu Y, Fang XP (1981) Induction of callus and regeneration of plantlets from corms of Crocus sativus L. Acta Bot Sin 23:419–420

    Google Scholar 

  • Dinkelman K, Van Staden J (1988) Micropropagation of Ixia maculata L. S Afr J Sci 84:589

    Google Scholar 

  • Dutta Gupta S, Datta S (2003) Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol Plant 47:179–183. doi:10.1023/B:BIOP.0000022248.62869.c7

    Google Scholar 

  • Ebrahimzadeh H, Karamian R, Noori-Daloii MR (1996) Regeneration of neoformant organs from organ parts of some Crocus species. J Sci I R Iran 7:65–76

    Google Scholar 

  • Ebrahimzadeh, Radjabian T, Karamian R (2000) In vitro production of floral buds in stigma-like structures on floral organs of Crocus sativus L. Pak J Bot 32:141–150

    Google Scholar 

  • Fennell CW, Van Staden (2004) Biotechnology of southern african bulbs. S Afr J Bot 70:37–46

    Google Scholar 

  • Fidalgo F, Santos A, Oliveira N, Santos I, Salema R (2005) Induction of somatic embryogenesis in Iris hollandica Hort. cv. ‘Bronze Queen’. J Hortic Sci Biotechnol 80:135–138

    Google Scholar 

  • Fukui Y, Tanaka Y, Kasumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′, 5′-hydroxylase gene. Phytochemistry 63:15–23. doi:10.1016/S0031-9422(02)00684-2

    PubMed  CAS  Google Scholar 

  • George EF, Sherrington PD (1984) Plant Propagation by tissue culture. Handbook and directory of commercial laboratories. Exegetics Ltd., Basingstoke, pp 411–586. ISBN 978-1402050046

    Google Scholar 

  • Graves ACF, Goldman SL (1987) Agrobacterium tumefaciens-mediated transformation of the monocot genus Gladiolus – detection of expression of T-DNA encoded genes. J Bacteriol 169:1745–1746

    Google Scholar 

  • Hauser B, Horn W (1989) Mikrovermehrung von Sparaxis tricolor hybriden (Iridaceae). Gartenbauwissenschaft 54:278–282

    Google Scholar 

  • Hauser B, Horn W (1991) In vitro corm formation of Sparaxis hybrids. Acta Hortic 300:169–172

    Google Scholar 

  • Hida A, Shimizu K, Nagata R, Yabuya T, Adachi T (1999) Plant regeneration from protoplasts of Iris hollandica Hort. Euphytica 105:99–102. doi:10.1023/A:1003407501918

    Google Scholar 

  • Homes J, Legros M, Jaziri M (1987) In vitro multiplication of C. sativus L. Acta Hortic 212:675–676

    Google Scholar 

  • Horn W, Wehrenfennig M, Bundies H (1989) Breeding and culture of polyploid Sparaxis hybrids. Acta Hortic 252:149–158

    Google Scholar 

  • Hussey G (1975) Totipotency in tissue explants and callus of some members of the Liliaceae, Iridaceae and Amaryllidaceae. J Exp Bot 26:253–262. doi:10.1093/jxb/26.2.253

    Google Scholar 

  • Hussey G (1976) In vitro release of axillary shoots from apical dominance in monocotyledonous plantlets. Ann Bot (Lond) 25:1323–1325

    Google Scholar 

  • Hussey G (1977a) In vitro propagation of Gladiolus by precocious axillary shoot formation. Sci Hortic (Amsterdam) 6:287–296. doi:10.1016/0304-4238(77)90086-3

    Google Scholar 

  • Hussey G (1977b) In vitro propagation of some members of the Liliaceae, Iridaceae and Amaryllidaceae. Acta Hortic 78:303–309

    Google Scholar 

  • Hussey G (1980) Propagation of some members of the Liliaceae, Iridaceae and Amaryllidaceae by tissue culture. In: Brickell CD, Cutler DF, Gregory M (eds) Petaloid monocotyledons. Linnean Society Symposium Series, number 8. Academic Press, London, pp 33-42. ISBN 0-12-133950-5

    Google Scholar 

  • Hussey G, Wyvill C (1972) Propagation of bulbous species by tissue culture. Ann Rep John Innes Inst 63:64–66

    Google Scholar 

  • Ilahi I, Jabeen M, Firdous N (1987) Morphogenesis with saffron tissue cultures. J Plant Physiol 128:227–232

    CAS  Google Scholar 

  • Jäger AK, McAlister MG, Van Staden J (1998) In vitro culture of Gladiolus carneus. S Afr J Bot 64:146–147

    Google Scholar 

  • Jéhan H, Courtois D, Ehrey C, Lerch K, Pétiard V (1994) Plant regeneration of Iris pallida Lam. and Iris germanica L. via somatic embryogenesis from leaves, apices and young flowers. Plant Cell Rep 13:671–675. doi:10.1007/BF00231621

    Google Scholar 

  • Jeknic Z, Lee SP, Davis J, Ernst RC, Chen THH (1999) Genetic transformation of Iris germanica mediated by Agrobacterium tumefaciens. J Am Soc Hortic Sci 124:575–580

    CAS  Google Scholar 

  • Jevremović S, Radojević LJ (2006) Establishment of efficient regeneration protocol from leaf explants of Iris pumila shoots cultured in vitro. Sci Hortic (Amsterdam) 108:100–103. doi:10.1016/j.scienta.2005.12.005

    Google Scholar 

  • Joung YH, Kamo K (2006) Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Rep 25:1081–1088. doi:10.1007/s00299-006-0185-7

    PubMed  CAS  Google Scholar 

  • Jun Z, Xiaobin C, Fang C (2007) Factors influencing in vitro flowering from styles of saffron. Acta Hortic 739:313–320

    Google Scholar 

  • Kamo K (1995) A cultivar comparison of plant regeneration from suspension cells, callus, and cormel slices of Gladiolus. In Vitro Cell Dev Biol Plant 31:113–115. doi:10.1007/BF02632247

    Google Scholar 

  • Kamo K (1997a) Factors affecting Agrobacterium tumefaciens-mediated gusA expression and opine synthesis in Gladiolus. Plant Cell Rep 16:389–392

    CAS  Google Scholar 

  • Kamo K (1997b) Bean yellow mosaic virus coat protein and gusA gene expression in transgenic Gladiolus plants. Acta Hortic 447:393–399

    CAS  Google Scholar 

  • Kamo K (2001) Expression of the bar and uidA genes by Gladiolus following three seasons of dormancy. Acta Hortic 560:165–168

    CAS  Google Scholar 

  • Kamo K (2003) Long-term expression of the uidA gene in Gladiolus plants under the control of either the ubiquitin, rolD, mannopine synthase, or cauliflower mosaic virus promoters following three seasons of dormancy. Plant Cell Rep 21:797–803

    PubMed  CAS  Google Scholar 

  • Kamo K (2008) Transgene expression for Gladiolus plants grown outdoors and in the greenhouse. Sci Hortic (Amsterdam) 117:275–280. doi:10.1016/j.scienta.2008.04.008

    CAS  Google Scholar 

  • Kamo K, Blowers A (1999) Tissue specificity and expression level of gusA under rolD, mannopine synthase and translation elongation factor 1 subunit α promoters in transgenic Gladiolus plants. Plant Cell Rep 18:809–815. doi:10.1007/s002990050666

    CAS  Google Scholar 

  • Kamo K, Van Eck J (1997) Effect of bialaphos and phosphinothricin on plant regeneration from long- and short-term callus cultures of Gladiolus. In Vitro Cell Dev Biol Plant 33:180–183. doi:10.1007/s11627-997-0018-6

    CAS  Google Scholar 

  • Kamo K, Chen J, Lawson R (1990) The establishment of cell suspension cultures of Gladiolus that regenerate plants. In Vitro Cell Dev Biol Plant 26:425–430

    CAS  Google Scholar 

  • Kamo K, Blowers A, Smith F, Van Eck J (1995a) Stable transformation of Gladiolus by particle gun bombardment of cormels. Plant Sci 110:105–111. doi:10.1016/0168-9452(95)04195-Z

    CAS  Google Scholar 

  • Kamo K, Blowers A, Smith F, Van Eck J, Lawson R (1995b) Stable transformation of Gladiolus using suspension cells and callus. J Am Soc Hortic Sci 120:347–352

    Google Scholar 

  • Kamo K, Blowers A, McElroy D (2000a) Effect of the cauliflower mosaic virus 35S, actin, and ubiquitin promoters on uidA expression from a bar-uidA-fusion gene in transgenic Gladiolus plants. In Vitro Cell Dev Biol Plant 36:13–20. doi:10.1007/s11627-000-0006-6

    CAS  Google Scholar 

  • Kamo K, McElroy D, Chamberlain D (2000b) Transforming embryogenic cell lines of Gladiolus with either a bar-uida fusion gene or cobombardment. In Vitro Cell Dev Biol Plant 36:182–187. doi:10.1007/s11627-000-0034-2

    CAS  Google Scholar 

  • Kamo K, Gera A, Cohen J, Hammond J, Blowers A, Smith F, Van Eck J (2005) Transgenic Gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. Plant Cell Rep 23:654–663. doi:10.1007/s00299-004-0888-6

    PubMed  CAS  Google Scholar 

  • Karamian R (2004) Plantlet regeneration via somatic embryogenesis in four species of Crocus. Acta Hortic 650:253–259

    Google Scholar 

  • Karamian R, Ebrahimzadeh H (2001) Plantlet regeneration from protoplast-derived embryogenic calli of Crocus cancellatus. Plant Cell Tissue Organ Cult 65:115–121. doi:10.1023/A:1010661620753

    CAS  Google Scholar 

  • Karaoğlu C, Çöcü S, İpek A, Parmaksiz İ, Sarihan E, Uranbey S, Arslan N, Kaya MD, Sancak C, Özcan S, Gürbüz B, Mirici S, Er C, Khawar KM (2007) In vitro micropropagation of saffron. Acta Hortic 739:223–228

    Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G-Q, Nehra NS, Lu C-Y, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600. doi:10.1093/pcp/pcm131

    PubMed  CAS  Google Scholar 

  • Kim KW, De Hertogh AA (1997) Tissue culture of ornamental flowering bulbs (geophytes). Hortic Rev (Am Soc Hortic Sci) 18:87–169

    Google Scholar 

  • Koh JC, Lee EJ, Park HG (2007) Effects of several plant growth regulators on callus and corm formation of Crocosmia crocosmiiflora in vitro. Flower Res J 15:238–244

    Google Scholar 

  • Krikorian AD, Kann RP (1986) Regeneration in Liliaceae, Iridaceae and Amaryllidaceae. In: Vasil IK (ed) Cell culture and somatic cell genetics in plants. Academic Press, Inc., New York, pp 187–205. ISBN 978-0127150031

    Google Scholar 

  • Kumar A, Sood A, Palni LMS, Gupta AK (1999) In vitro propagation of Gladiolus hybridus Hort.: synergistic effect of heat shock and sucrose on morphogenesis. Plant Cell Tissue Organ Cult 57:105–112. doi:10.1023/A:1006373314814

    CAS  Google Scholar 

  • Kumar A, Palni LMS, Sood A, Sharma M, Palni UT, Gupta AK (2002) Heat-shock induced somatic embryogenesis in callus cultures of gladiolus in the presence of high sucrose. J Hortic Sci Biotechnol 77:73–78

    CAS  Google Scholar 

  • Laublin G, Cappodocia M (1992) In vitro ovary culture of some apogon garden irises (Iris pseudacorus L., I. setosa Pall., I. versicolor L.). Bot Acta 105:319–322

    Google Scholar 

  • Laublin G, Saini HS, Cappodocia M (1991) In vitro plant regeneration via somatic embryogenesis from root culture of some rhizomatous irises. Plant Cell Tissue Organ Cult 27:15–21. doi:10.1007/BF00048200

    CAS  Google Scholar 

  • Le Nard M, De Hertogh AA (2002) Research needs for flower bulbs (geophytes). Acta Hortic 570:121–127

    Google Scholar 

  • Leifert C, Camotta H, Waites WM (1992a) Effect of combinations of antibiotics on micropropagated Delphinium, Hosta, Iris and Photinia. Plant Cell Tissue Organ Cult 29:153–160. doi:10.1007/BF00033621

    CAS  Google Scholar 

  • Leifert C, Pryce S, Lumsden PJ, Waites WM (1992b) Effects of medium acidity on growth and rooting of different plant species growing in vitro. Plant Cell Tissue Organ Cult 30:171–179. doi:10.1007/BF00040019

    Google Scholar 

  • Lilien-Kipnis H, Kochba M (1987) Mass propagation of new Gladiolus hybrids. Acta Hortic 212:631–637

    Google Scholar 

  • Lipsky AK, Kataeva NV, Butenko RG (1997) Comparison of parameters of the Gladiolus bud cultures grown in the bioreactor at different regimes. Acta Hortic 447:671–672

    Google Scholar 

  • Löffler HJM, Mouris JR, Van Harmelen MJ, Van Tuyl JM (2000) Transformation of gladiolus for Fusarium resistance. Acta Hortic 508:313–314

    Google Scholar 

  • Logan AE, Zettler FW (1985) Rapid in vitro propagation of virus-indexed gladioli. Acta Hortic 212:631–638

    Google Scholar 

  • Madubanya LA, Makunga NP, Fennell CW (2006) Dierama luteoalbidum: liquid culture provides an efficient system for the ex situ conservation of an endangered and horticulturally valuable plant. S Afr J Bot 72:584–588. doi:10.1016/j.sajb.2006.04.002

    Google Scholar 

  • Majourhay K, Fernández JA, Martínez-Gómez P, Piqueras A (2007) Enhanced plantlet regeneration from cultured meristems in sprouting buds of saffron corms. Acta Hortic 739:275–278

    Google Scholar 

  • Mangal M, Bhardwaj SV, Handa A, Jindal KK (2002) Production of virus tested Gladioli through in vitro and in vivo techniques. Acta Hortic 624:511–514

    Google Scholar 

  • McAlister BG, Jäger AK, Van Staden J (1998) Micropropagation of Babiana spp. S Afr J Bot 64:88–90

    CAS  Google Scholar 

  • Meyer HJ, Van Staden J (1998) In vitro multiplication of Ixia flexuosa. HortScience 23:1070–1071

    Google Scholar 

  • Mielke KA, Anderson WC (1989) In vitro bulblet formation in Dutch iris. HortScience 24:1028–1031

    CAS  Google Scholar 

  • Milyaeva EL, Azizbekova NS, Komarova EN, Akhundova DD (1995) In vitro of regenerant corms of saffron crocus (Crocus sativus L.). R. J Plant Physiol 42:112–119

    CAS  Google Scholar 

  • Nasir IA, Riazuddin S (2008) In vitro selection for fusarium wilt resistance in gladiolus. J Integr Plant Biol 50:601–612. doi:10.1111/j.1744-7909.2008.00656.x

    PubMed  Google Scholar 

  • Nhut DT, Teixeira da Silva JA, Huyen PX, Paek KY (2004) The importance of explant source on regeneration and micropropagation of Gladiolus by liquid shake culture. Sci Hortic (Amsterdam) 102:407–414. doi:10.1016/j.scienta.2004.04.004

    Google Scholar 

  • Niederwieser JG, Kleynhans R, Hancke FL (2002) Development of a new flower bulb crop in South Africa. Acta Hortic 570:67–71

    Google Scholar 

  • Page YM, Van Staden J (1985) In vitro propagation of Dierama latifolium. HortScience 20:1049–1050

    CAS  Google Scholar 

  • Para G, Baratti J (1992) Irones and precursors synthesized by Iris sibirica tissue culture. Biosci Biotechnol Biochem 56:1132–1133

    CAS  Google Scholar 

  • Petrů E, Jirsáková E, Landa Z (1976) Clonal propagation of some Freesia cultivars through tissue culture. Biol Plant 18:304–306. doi:10.1007/BF02922381

    Google Scholar 

  • Pierik RLM, Steegmans HHM (1975) Freesia plantlets from flower-buds cultivated in vitro. Neth J Agric Sci 23:334–337

    Google Scholar 

  • Plessner O, Ziv M (1999) In vitro propagation and secondary metabolite production in Crocus sativus L. In: Negbi M (ed) Medicinal and aromatic plants—industrial profiles. Harwood Academic Publishers, Amsterdam, The Netherlands, pp 137–148. ISBN 978-90-5-702394-1

    Google Scholar 

  • Plessner O, Ziv M, Negbi M (1990) In vitro corm production in the saffrom crocus (Crocus sativus L.). Plant Cell Tissue Organ Cult 20:89–94. doi:10.1007/BF00114705

    Google Scholar 

  • Prasad VSS, Dutta Gupta S (2006) In vitro shoot regeneration of gladiolus in semi-solid agar versus liquid cultures with support systems. Plant Cell Tissue Organ Cult 87:263–271. doi:10.1007/s11240-006-9160-9

    Google Scholar 

  • Radojević L, Subotić A (1992) Plant regeneration of Iris setosa Pall. through somatic embryogenesis and organogenesis. J Plant Physiol 139:690–696

    Google Scholar 

  • Raja W, Zaffer G, Wani SA (2007) In vitro microcorm formation in saffron (Crocus sativus L.). Acta Hortic 739:291–296

    Google Scholar 

  • Randolph LF (1945) Embryo culture of Iris seed. Bull Am Iris Soc 98:33–45 (Cited in Krikorian and Kann, 1986)

    Google Scholar 

  • Remotti PC (1995) Primary and secondary embryogenesis from cell suspension cultures of Gladiolus. Plant Sci 107:205–214. doi:10.1016/0168-9452(95)04106-5

    CAS  Google Scholar 

  • Remotti PC, Löffler HJM (1995) Callus induction and plant regeneration from gladiolus. Plant Cell Tissue Organ Cult 42:171–178. doi:10.1007/BF00034235

    Google Scholar 

  • Remotti PC, Löffler HJM, van Vloten-Doting L (1997) Selection of cell lines and regeneration of plants resistant to fusaric acid from Gladiolus × grandiflorus cv. ‘Peter Pears’. Euphytica 96:237–245. doi:10.1023/A:1003034215722

    Google Scholar 

  • Roh MS, Lawson RH (1998) Requirements for new floral crops—perspectives for the United States of America. Acta Hortic 454:29–38

    Google Scholar 

  • Roy SK, Gangopadhyay G, Bandyopadhyay T, Modak BK, Datta S, Mukherjee KK (2006) Enhancement of in vitro micro corm production in Gladiolus using alternative matrix. Afr J Biotechnol 5:1204–1209

    CAS  Google Scholar 

  • Sano K, Himeno H (1987) In vitro proliferation of saffron (Crocus sativus L.) stigma. Plant Cell Tissue Organ Cult 11:159–166. doi:10.1007/BF00040422

    Google Scholar 

  • Sarma KS, Sharada K, Maesato K, Hara T, Sonoda Y (1991) Chemical and sensory analysis of saffron produced through cultures of Crocus sativus. Plant Cell Tissue Organ Cult 26:11–16. doi:10.1007/BF00116603

    CAS  Google Scholar 

  • Sen J, Sen S (1995) Two-step bud culture technique for a high frequency regeneration of Gladiolus corms. Sci Hortic (Amsterdam) 64:133–138. doi:10.1016/0304-4238(95)00822-3

    Google Scholar 

  • Sengupta J, Sen S (1988) Karyological analysis of cultured cells and regenerated plants of Cipura paludosa Aubl. (Iridaceae)—a structural hybrid. Bull Torrey Bot Club 115:280–289. doi:10.2307/2996160

    Google Scholar 

  • Sheibani M, Nemati SH, Davarinejad GH, Azghandi AV, Habashi AA (2007) Induction of somatic embryogenesis in saffron using thidiazuron (TDZ). Acta Hortic 739:259–268

    Google Scholar 

  • Shibli RA, Ajlouni MM (2000) Somatic embryogenesis in the endemic black iris. Plant Cell Tissue Organ Cult 61:15–21. doi:10.1023/A:1006468122819

    CAS  Google Scholar 

  • Shimizu K, Yabuya T, Adachi T (1996) Plant regeneration from protoplasts of Iris germanica L. Euphytica 89:223–227. doi:10.1007/BF00034609

    Google Scholar 

  • Shimizu K, Nagaike H, Yabuya T, Adachi T (1997) Plant regeneration from suspension culture of Iris germanica. Plant Cell Tissue Organ Cult 50:27–31. doi:10.1023/A:1005910710066

    Google Scholar 

  • Shimizu K, Miyabe Y, Nagaike H, Yabuya T, Adachi T (1999) Production of somatic hybrid plants between Iris ensata Thunb. and I. germanica L. Euphytica 107:105–113. doi:10.1023/A:1026431800693

    Google Scholar 

  • Simonsen J, Hildebrandt AC (1971) In vitro growth and differentiation of Gladiolus plants from callus cultures. Can J Bot 49:1817–1819. doi:10.1139/b71-256

    Google Scholar 

  • Stefaniak B (1994) Somatic embryogenesis and plant regeneration of Gladiolus (Gladiolus hort.). Plant Cell Rep 13:386–389. doi:10.1007/BF00234143

    CAS  Google Scholar 

  • Steinitz B, Cohen A, Goldberg Z, Kochba M (1991) Precocious gladiolus corm formation in liquid shake cultures. Plant Cell Tissue Organ Cult 26:63–70. doi:10.1007/BF00036107

    CAS  Google Scholar 

  • Stimart DP, Ascher PD (1978) Propagation and stability of diploid Freesia hybrida cv. royal in tissue culture. HortScience 13:1382–1383

    Google Scholar 

  • Stimart DP, Ascher PD (1982) Plantlet regeneration and stability from callus cultures of Freesia hybrida cultivar “Royal”. Sci Hortic (Amsterdam) 23:153–157

    Google Scholar 

  • Sutter EG (1986) Micropropagation of Ixia viridifolia and a Gladiolus × Homoglossum hybrid. Sci Hortic (Amsterdam) 29:181–189. doi:10.1016/0304-4238(86)90045-2

    Google Scholar 

  • Suzuki K, Oyama-Okubo N, Nakayama M, Takatsu Y, Kasumi M (2008) Floral scent of wild Gladiolus species and the selection of breeding material for this character. Breed Sci 58:89–92. doi:10.1270/jsbbs.58.89

    Google Scholar 

  • Taylor W, Bhatti S, Long D, Sauve R (2000) In vitro culture of Gladiolus. SNA Res Conf 45:328–330

    Google Scholar 

  • Thun V, Goo DH, Kim MH, Byun NS, Kim KW (2008) Effect of in vitro culture environments and culture methods on cormlet formation of gladiolus. Hortic Environ Biotechnol 49:114–120

    Google Scholar 

  • Van Aartrijk J, van der Linde PCG (1986) In vitro propagation of flower-bulb crops. In: Zimmerman RH, Griesbach RJ, Hammerschlag FA, Lawson RH (eds) Tissue culture as a plant production system for horticultural crops. Martinus Nijhoff Publishers, Dordrecht, pp 317–332. ISBN 90-247-3255-7

    Google Scholar 

  • Van der Linde PCG (1992) Tissue culture of flower-bulb crops: theory and practice. Acta Hortic 325:419–428

    Google Scholar 

  • Van der Linde PCG, Hol GMGM, Blom-Barnhoorn, van Aartrijk J, de Klerk GJ (1988) In vitro propagation of Iris hollandica tub. cv. Prof. Blaauw. I. Regeneration on bulb scale explants. Acta Hortic 226:121–128

    Google Scholar 

  • Vieth J, Laublin G, Morisset C, Cappodocia M (1992) Multiplication in vitro of some Iris plants from roots–histological aspects of somatic embryogenesis. Can J Bot 70:1809–1814. doi:10.1139/b92-224

    Google Scholar 

  • Wang L, Huang B, He M, Hao S (1990) Somatic embryogenesis and its hormonal regulation in tissue cultures of Freesia refracta. Ann Bot (Lond) 65:271–276

    Google Scholar 

  • Wang Y, Jeknić Z, Ernst RC, Chen THH (1999a) Efficient plant regeneration from suspension cultured cells of tall bearded Iris. HortScience 34:730–735

    Google Scholar 

  • Wang Y, Jeknić Z, Ernst RC, Chen THH (1999b) Improved plant regeneration from suspension cultured cells of Iris germanica L. ‘Skating Party’. HortScience 34:1271–1276

    Google Scholar 

  • Ziv M (1989) Enhanced shoot and cormlet proliferation in liquid cultured gladiolus buds by growth retardants. Plant Cell Tissue Organ Cult 17:101–110. doi:10.1007/BF00046855

    CAS  Google Scholar 

  • Ziv M (1990) The effect of growth retardants on shoot proliferation and morphogenesis in liquid cultured Gladiolus plants. Acta Hortic 280:207–213

    Google Scholar 

  • Ziv M (1991) Morphogenic patterns of plants micropropagated in liquid medium in shaken flasks or large-scale bioreactor cultures. Isr J Bot 40:145–153

    Google Scholar 

  • Ziv M (1992) Morphogenic control of plants micropropagated in bioreactor cultures and its possible impact on acclimatization. Acta Hortic 319:119–124

    Google Scholar 

  • Ziv M (1997) The contribution of biotechnology to breeding, propagation and disease resistance in geophytes. Acta Hortic 430:247–258

    Google Scholar 

  • Ziv M, Lilien-Kipnis H (2000) Bud regeneration from inflorescence explants for rapid propagation of geophytes in vitro. Plant Cell Rep 19:845–850. doi:10.1007/s002990000204

    CAS  Google Scholar 

  • Ziv M, Naor V (2006) Flowering of geophytes in vitro. Prop Ornam Plants 6:3–16

    Google Scholar 

  • Ziv M, Halevy AH, Shilo R (1970) Organs and plantlets regeneration of Gladiolus through tissue culture. Ann Bot (Lond) 34:671–676

    CAS  Google Scholar 

  • Ziv M, Ronen G, Raviv M (1998) Proliferation of meristematic clusters in disposable presterilized plastic bioreactors for the large-scale micropropagation of plants. In Vitro Cell Dev Biol Plant 34:152–158. doi:10.1007/BF02822781

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Claude Leon Foundation, University of KwaZulu-Natal, National Research Foundation (Pretoria), University of Minnesota Agriculture Experiment Station and the Minnesota Nursery and Landscape Foundation for generous financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes van Staden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascough, G.D., Erwin, J.E. & van Staden, J. Micropropagation of iridaceae—a review. Plant Cell Tiss Organ Cult 97, 1–19 (2009). https://doi.org/10.1007/s11240-009-9499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9499-9

Keywords

Navigation