Skip to main content
Log in

Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the antioxidant enzymatic system

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The ontogenetic developmental stages of saffron somatic embryogenesis have been studied and characterized using light microscopy and the biochemical determination of the antioxidant enzymatic system. The embryogenic callus underwent internal segmented divisions with the formation of globular embryos that were attached to the callus surface by a broad multicellular structure. Further development of the embryoids was characterized by the emergence of a shoot apical meristem and cotyledon (monopolar stage) with the subsequent differentiation of a minicorm at the basal part of the somatic embryo (dipolar stage). During the morphological differentiation of the somatic embryos changes in the antioxidant enzymatic system with increased superoxide dismutase (SOD) and catalase (CAT) activities were detected at the initial stages of somatic embryogenesis. The isoforms of SOD, including two Mn-SODs and four Cu, Zn-SODs, were also detected. Although all the isoforms were expressed during the successive stages of somatic embryogenesis, an increase in Mn-SODs and a decrease in Cu, Zn-SODs during the last two stages was observed. Significant changes were also detected in the antioxidant activities ascorbate peroxidase, dehydroascorbic acid reductase and glutathione reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

ASC:

Ascorbate

BA:

Benzyladenine

CAT:

Catalase

2,4 D:

2,4 Dichlorophenoxiacetic acid

EDTA:

Ethylenediaminetetraacetic acid

DHA:

Dehydroascorbic acid

DHAR:

Dehydroascorbic acid reductase

GR:

Glutathione reductase

GSSG:

Glutathione oxidized

GSH:

Glutathione reduced

KCN:

Potassium cyanide

MDA:

Malondialdehyde

MDHAR:

Monodehydroascorbate reductase

NAA:

α-Naphtaleneacetic acid

NADH:

Nicotine adenine dinucletide reduced

MS:

Murashige and Skoog 1962

PAGE:

Polyacryamide gel electrophoresis

PMSF:

Phenylmethylsulphonilfluoride

p-HMB:

p-Hydroxy mercury benzoic acid

PVP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Adams L, Benson EE, Staines HJ, Bremmer DH, Millan S, Dighton N (1999) Effects of the lipid peroxidation products 4-hydroxy-2-nonenal and malondialdehyde on the proliferation and morphogenic development of in vitro plan cells. J Plant Physiol 155:376–386

    CAS  Google Scholar 

  • Aebi M (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  • Ahuja A, Koul A, Ram G, Kaul BL (1994) Somatic embryogenesis and plant regeneration in saffron, Crocus sativus L. Indian J Exp Biol 32:135–140

    Google Scholar 

  • Bagnoli F, Capuana M, Racchi NL (1998) Developmental changes in catalase and superoxide dismutase isoenzymes in zygotic and somatic embryos of horse chestnut. Funct Plant Biol 25:909–913. doi:10.1071/PP98068

    Article  CAS  Google Scholar 

  • Bartel B, Le Clere S, Magidin M, Zolman BK (2001) Impulse to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid oxidation. J Plant Growth Regul 20:198–216. doi:10.1007/s003440010025

    Article  CAS  Google Scholar 

  • Belmonte MF, Donald G, Reid DM, Yeoung E, Stassolla C (2005) Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca). J Exp Bot 56:2355–2364. doi:10.1093/jxb/eri228

    Article  PubMed  CAS  Google Scholar 

  • Benson EE, Lynch PT, Jones J (1992) Variation in free radical damage in rice cell suspensions with different embryogenic potentials. Planta 188:296–305. doi:10.1007/BF00192795

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Bueno P, Piqueras A, Kurepa J, Savouré A, Verbruggen N, Van Montagú M, Inzé D (1998) Expresión of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci 138:27–34. doi:10.1016/S0168-9452(98)00154-X

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787. doi:10.1104/pp.106.085506

    Article  PubMed  CAS  Google Scholar 

  • Chichiricco G, Grilli-Caiola M (1987) In vitro development of partenocarpic fruits of Crocus sativus L. Plant Cell Tissue Organ Cult 11:75–78. doi:10.1007/BF00036578

    Article  Google Scholar 

  • De Gara L, de Pinto MC, Arigoni D (1997) Ascorbate síntesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant 100:894–900. doi:10.1034/j.1399-3054.1997.1000415.x

    Article  Google Scholar 

  • Deighton N, Magil WJ, Bremner DH, Benson EE (1997) Malondialdehyde and 4-hydroxy-2-nonenal in plant tissue cultures: LC-MS determination of dinitrophenylhydrazone derivatives. Free Radic Res 27:255–257. doi:10.3109/10715769709065764

    Article  PubMed  CAS  Google Scholar 

  • Dutta Gupta S, Datta S (2003) Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol Plant 47:179–183. doi:10.1023/B:BIOP.0000022248.62869.c7

    Article  Google Scholar 

  • Escribano J, Piqueras A, Medina J, Rubio A, Alvarez-Orti M, Fernandez JA (1999) Production of cytotxic proteoglycan using callus cultures of saffron corms (Crocus sativus L.). J Biotechnol 73:53–59. doi:10.1016/S0168-1656(99)00125-X

    Article  PubMed  CAS  Google Scholar 

  • Fereol L, Chovelon V, Causse S, Michaux-Ferriere N, Kahane R (2002) Evidence of a somatic embryogenesis process for plant regeneration in garlic (Allium sativun L.). Plant Cell Rep 21:197–203. doi:10.1007/s00299-002-0498-0

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071. doi:10.1111/j.1365-3040.2005.01327.x

    Article  CAS  Google Scholar 

  • George PS, Visvanath S, Ravishankar GA, Venkatamaran LV (1992) Tissue culture of saffron (Crocus sativus L.): somatic embryogenesis and shoot regeneration. Food Biotechnol 6(3):217–223

    Article  CAS  Google Scholar 

  • Grilli-Caiola M (2005) Embryo origin and development in Crocus sativus L. Plant Biosyst 139:335–343. doi:10.1080/11263500500340763

    Article  Google Scholar 

  • Hernández JA, Campillo A, Alarcón JJ, Sevilla F (1999) Response of antioxidant system and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251. doi:10.1046/j.1469-8137.1999.00341.x

    Article  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Ros-Barceló A, Sevilla F (2001) Antioxidant systems and O ·-2 /H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiol 127:817–831.

    Article  PubMed  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncata. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260. doi:10.1104/pp.104.055277

    Article  PubMed  CAS  Google Scholar 

  • Jiménez A, Hernández JA, Del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Kairong C, Gengsheng X, Xinmin L, Gengmei X, Yafu W (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarun L. Plant Sci 146:9–16. doi:10.1016/S0168-9452(99)00087-4

    Article  Google Scholar 

  • Karamian R, Ebrahimzadeh H (2001) Plantlet regeneration from protoplast derived embryogenic calli of Crocus cancellatus. Plant Cell Tissue Organ Cult 68:115–121. doi:10.1023/A:1010661620753

    Article  Google Scholar 

  • Libik M, Konieczny R, Pater B, Slesak I, Miszalski Z (2005) Differences in the activities of some antioxidant enzymes and H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Plant Cell Rep 23:834–841. doi:10.1007/s00299-004-0886-8

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein. J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Obert B, Benson E, Millan E, Prêtóvá A, Bremmer DH (2005) Moderation of morphogenic and oxidative stress responses in flax in vitro cultures by hydroxynonenal and desferroxiamine. J Plant Physiol 162:537–547. doi:10.1016/j.jplph.2004.06.002

    Article  PubMed  CAS  Google Scholar 

  • Palma J, Garrido M, Rodriguez M, Del Rio LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant species. Arch Biochem Biophys 287:68–74. doi:10.1016/0003-9861(91)90389-Z

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolezi P, Potters G, Asard H, Van Onkelen HA, Dutis D, Feher A (2002) The role of auxin, Ph, and stress in the activation of embryogenic cell division in leaf protoplasts-derived cells of alfalfa. Plant Physiol 129:1807–1819. doi:10.1104/pp.000810

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Potters G, Caubergs R, Jansen MAK (2005) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ and cellular level. J Exp Bot 58:1991–2001. doi:10.1093/jxb/eri196

    Article  Google Scholar 

  • Piqueras A, Han BH, Escribano J, Rubio C, Hellín E, Fernandez JA (1999) Development of cormogenic nodules and microcorms by tissue culture, a new tool for the multiplication and genetic improvement of saffron. Agronomie 19:603–610. doi:10.1051/agro:19990704

    Article  Google Scholar 

  • Quiroz-Figueroa F, Mendez-Zeel M, Sánchez-Teyer F, Rojas-Herrera R, Loyola-Vargas VM (2002) Differential gene expression in embryogenic and non embryogenic clusters form cell suspension cultures of Coffea Arabica. J Plant Physiol 159:1250–1267. doi:10.1078/0176-1617-00878

    Google Scholar 

  • Radojevic J, Subotic A (1992) Plant regeneration of Iris setosa Pall through somatic embryogenesis and organogenesis. J Plant Physiol 139:690–696

    CAS  Google Scholar 

  • Sage DO, Lynn J, Hammat N (2000) Somatic embryogenesis in Narcisus Pseudonarcissus cvs. Golden Harvesat and St Keverne. Plant Sci 150:209–216. doi:10.1016/S0168-9452(99)00190-9

    Article  CAS  Google Scholar 

  • Sparkes IA, Brandizzi F, Slocombe SP, El-Shami M, Hawes C, Baker A (2003) An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis. Plant Physiol 133:1809–1819. doi:10.1104/pp.103.031252

    Article  PubMed  CAS  Google Scholar 

  • Stefaniak B (1994) Somatic embryogenesis and plant regeneration of gladiolus (Gladiolus Hort). Plant Cell Rep 3:386–389

    Google Scholar 

  • Stewart RC, Bewley D (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–246. doi:10.1104/pp.65.2.245

    Article  PubMed  CAS  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136. doi:10.1104/pp.103.019968

    Article  PubMed  CAS  Google Scholar 

  • Thorpe TA, Stasolla C (2001) Somatic embryogenesis. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer Publishers, Dordrecht, pp 279–336

    Google Scholar 

  • Tian M, Gu Q, Zhu M (2003) The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Sci 165:701–707. doi:10.1016/S0168-9452(03)00224-3

    Article  CAS  Google Scholar 

  • van Breusegem FM, Vranova E, Dat JF, Inzé D (2001) The role of active oxygen in plant signal transduction. Plant Sci 161:405–414. doi:10.1016/S0168-9452(01)00452-6

    Article  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249. doi:10.1023/A:1015673200621

    Article  Google Scholar 

  • Wang Y, Jeknic Z, Ernst RC, Chen TH (1999) Efficient plant regeneration from suspension-cultured cells of tall bearded iris. HortScience 34(4):730–735

    Google Scholar 

  • Weber H (2000) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224. doi:10.1016/S1360-1385(02)02250-1

    Article  Google Scholar 

  • Weissiger RA, Fridovich I (1973) Superoxide dismutase: organelle specificity. J Biol Chem 248:3582–3592

    Google Scholar 

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Publishers, Dordrecht, pp 205–247

    Google Scholar 

  • Yeung EC, Law SK (1987) Serial sectioning techniques for a modified LKB historesin. Stain Technol 62:147–153

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–234. doi:10.1104/pp.123.1.223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Piqueras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blazquez, S., Olmos, E., Hernández, J.A. et al. Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the antioxidant enzymatic system. Plant Cell Tiss Organ Cult 97, 49–57 (2009). https://doi.org/10.1007/s11240-009-9497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9497-y

Keywords

Navigation