Skip to main content
Log in

New insights into the in vitro organogenesis process: the case of Passiflora

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

We present evidences that ultrastructural electron microscope findings are valuable ways to understand the in vitro regeneration process, in particular in the yellow passion fruit. Shoot-regeneration was induced in hypocotyl and leaf-derived explants using 4.44 μM BAP, and the entire organogenic process was analyzed using conventional histology, scanning and transmission electronic microscopy. Both direct and indirect regeneration modes were observed in hypocotyl explants, but only direct regeneration occurred in leaf-derived cultures. In the direct pathway from both explant types, meristemoids developed into globular structures, here called protuberances. The peripheral meristematic layers of the protuberances displayed ultrastructural characteristics indicative of a high metabolic activity, and only these cells originated shoots and leaf primordia, the latter being frequent when leaf explants were used. Moreover, the peripheral cells of the protuberances derived from leaf explants lost adhesion during the culture, diminishing the regeneration rates. We recommend the use of hypocotyls as a source of explant to obtain shoots as well as a genetic transformation system for the yellow passion fruit. However, the direct pathway is preferred because a type of amitosis occurred in the peripheral cells of hypocotyl-derived calli, which has the potential to result in genetic instability of the regenerating plants/tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAP N6 :

6-Benzylaminopurine

TDZ:

Thidiazuron (N-phenyl-N′-1,2,3,-thiadiazol-5-ylurea)

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

References

  • Appezzato-da-Glória B, Machado SR (2004) Ultrastructural analysis of in vitro direct and indirect organogenesis. Rev Bras Bot 27:429–437

    Google Scholar 

  • Appezzato-da-Glória B, Vieira MLC, Dornelas MC (1999) Anatomical studies of in vitro organogenesis induced in leaf-derived explants of passionfruit. Pesqui Agropecu Bras 34:2007–2013

    Google Scholar 

  • Appezzato-da-Glória B, Fernando JA, Machado SR, Vieira MLC (2005) Estudos morfológicos, anatômicos, histoquímicos e ultra-estruturais da organogênese in vitro do maracujazeiro. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Maracujá: germoplasma e melhoramento genético. Embrapa Cerrados, Planaltina, pp 387–407

    Google Scholar 

  • Becerra DC, Forero AP, Góngora GA (2004) Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa. Plant Cell Tiss Org Cult 79:87–90

    Article  Google Scholar 

  • Biasi LA, Falco MC, Rodriguez APM, Mendes BMJ (2000) Organogenesis from internodal segments of yellow passion fruit. Sci Agric 57:661–665

    Google Scholar 

  • Bregoli AM, Crosti P, Cavallini A, Cionini G, Del Luca S, Malerba M, Natali L, Serafini-Fracassini D, D’Amato F (1997) Nuclear DNA distribution and amitotic processes in activated Helianthus tuberosus tuber parenchyma. Plant Biosyst 131:3–12

    Google Scholar 

  • Burgess J, Linstead P (1984) In-vitro tracheary element formation: structural studies and effect of tri-iodobenzoic acid. Planta 160:481–489

    Article  CAS  Google Scholar 

  • Dornelas MC, Vieira MLC (1994) Tissue culture studies on species of Passiflora. Plant Cell Tiss Org Cult 36:211–217

    Article  CAS  Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  PubMed  CAS  Google Scholar 

  • Hall RM, Drew RA, Higgins CM, Dietzgen RG (2000) Efficient organogenesis of an Australian passionfruit hybrid (Passiflora edulis × Passiflora edulis var. flavicarpa) suitable for gene delivery. Aust J Bot 48:673–680

    Article  Google Scholar 

  • Hervé P, Jauneau A, Pâques M, Marien JN, Boudet AM, Teulières C (2001) A procedure for shoot organogenesis in vitro from leaves and nodes of an elite Eucalyptus gunnii clone: comparative histology. Plant Sci 161:645–653

    Article  Google Scholar 

  • Horridge GA, Tamm SL (1969) Critical point drying for scanning electron microscopy study of ciliary motion. Science 163:817–818

    Article  PubMed  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Lombardi SP, Passos IRS, Nogueira MCS, Appezzato-da-Glória B (2007) in vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata mast. Braz Arch Biol Tech 50:239–247

    Google Scholar 

  • Lord EM, Mollet JC (2002) Plant cell adhesion: a bioassay facilitates discovery of the first pectin biosynthetic gene. Proc Natl Acad Sci USA 99:15843–15845

    Article  PubMed  CAS  Google Scholar 

  • Lozovaya V, Ulanov A, Lygin A,·Duncan D, Widholm J (2006) Biochemical features of maize tissues with different capacities to regenerate plants. Planta 224:1385–1399

    Article  PubMed  CAS  Google Scholar 

  • McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186

    CAS  Google Scholar 

  • Monteiro ACBA, Nakazawa GT, Mendes BMJ, Rodriguez APM (2000) Regeneração in vitro de Passiflora suberosa a partir de discos foliares. Sci Agri 57:571–573

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Reinecke M, Walther C (1978) Aspects of turnover and biogenesis of synaptic vesicles at locust neuromuscular junctions as revealed by iodide–osmium tetroxide (ZIO) reacting with intravesicular sh-groups. J Cell Biol 78:839–855

    Article  PubMed  CAS  Google Scholar 

  • Reynolds ES (1963) Use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208

    Article  PubMed  CAS  Google Scholar 

  • Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technol 48:247–249

    PubMed  CAS  Google Scholar 

  • Shevell DE, Kunkel T, Chua NH (2000) Cell wall alterations in the Arabidopsis emb30 mutant. Plant Cell 12:2047–2060

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan C, Liu Z, Heidmann I, Supena EDJ, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JBM, Boutilier K (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341–351

    Article  PubMed  CAS  Google Scholar 

  • Trevisan F, Mendes BMJ (2005) Optimization of in vitro organogenesis in passion fruit (Passiflora edulis f. flavicarpa). Sci Agric 62:346–350

    Google Scholar 

  • Trevisan F, Mendes BMJ, Maciel SC, Vieira MLC, Meletti LMM, Rezende JAM (2006) Resistance to passion fruit woodiness virus in transgenic passionflower expressing the virus coat protein gene. Plant Dis 90:1026–1030

    Article  CAS  Google Scholar 

  • Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4:475–478

    Article  PubMed  CAS  Google Scholar 

  • Weis KG, Polito VS, Labavitch JM (1988) Microfluorometry of pectic materials in the dehiscence zone of almond (Prunus dulcis (Mill) DA Webb) fruits. J Histochem Cytochem 36:1037–1041

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Institutions Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Pesquisa (CNPq) for financial support. Professor Elliot W. Kitajima from the Microscopic Center, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, and Professor Elisa A. Gregório from the Microscopic Center, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” for the use of laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Appezzato-da-Glória.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernando, J.A., Vieira, M.L.C., Machado, S.R. et al. New insights into the in vitro organogenesis process: the case of Passiflora . Plant Cell Tiss Organ Cult 91, 37–44 (2007). https://doi.org/10.1007/s11240-007-9275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9275-7

Keywords

Navigation