Skip to main content
Log in

Microparticle bombardment of Stylosanthes guianensis: transformation parameters and expression of a methionine-rich 2S albumin gene

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

An effective protocol to generate stable transformants of the tropical forage legume Stylosanthes guianensis (Aubl.) Sw. in a selection-free system was developed. Based on transient reporter gene expression, we have obtained transformation rates of 3.47% using 30-day-old calli as target, 1300 psi helium pressure, 12.5 cm microprojectile flight distance, 10–20 mm distance between macrocarrier membrane and stopping screen and 10–20 mm gap distance between the shock wave generator and the macrocarrier. These parameters were utilized to produce transgenic S. guianensis plants expressing Be2S1 from Bertholletia excelsa that codes for a methionine-rich storage protein driven by a green-tissue specific promoter, Ats1 from Arabidopsis thaliana. Transgenic plants were identified by a PCR-based high-throughput screen in a selective agent-free system, employing pools of 20–50 regenerating shoots. The integration of the exogenous gene in the host genome was confirmed by Southern blot analysis of PCR-positive plants. The expression of the introduced gene was confirmed in leaf tissue of transgenic plants by Northern and Western blot analyses. Immunoblots of cellular fractions showed that BE2S1 expressed in Stylosanthes is mainly targeted to the vacuoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMV:

Alfalfa mosaic virus

BAP:

6-Benzylaminopurine

BCIP:

5-Bromo-4-chloro-3-indolyl-phosphate

CAMV:

Cauliflower mosaic virus

ELISA:

Enzyme-linked immunosorbent assay

GUS:

β-Glucuronidase

NBT:

Nitro blue tetrazolium

NEO:

Neomycin phosphotransferase

NOS:

Nopaline synthase

Rubisco:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

SDS-PAGE:

Sodium dodecylsulphate-polyacrylamide gel electrophoresis

X-gluc:

5-Bromo-4-chloro-3-indolyl glucuronide

References

  • Almeida ER de, Gossele V, Muller CG, Dockx J, Reynaerts A, Botterman J, Krebbers E, Timko MP (1989) Transgenic expression of two marker genes under the control of an Arabidopsis rbcS promoter: sequences encoding the Rubisco transit peptide increase expression levels. Mol Gen Genet 218:78–86

    Article  Google Scholar 

  • Ankenbauer RG, Nester EW (1993) The Agrobacterium Ti plasmid and crown gall tumorigenesis: a model for signal transduction in host–pathogen interactions. In: Nester EW (ed) Signal transduction: prokaryotic and simple eukaryotic systems. Academic Press Incorporated, pp 67–104

  • Aragão FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Atkins CA, Smith PMC (1997) Genetic transformation and regeneration of legumes. In: Legocki A, Bothe H, Puhler A (eds) Biological fixation of nitrogen for ecology and sustainable agriculture. Springer-Verlag, Berlin, pp 283–304

    Google Scholar 

  • Bennet PM, Livesey CT, Nathwani D, Reeves DS, Saunders JR, Wise R (2004) An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J Antimichrob Chemother 53:418–431

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chabaud M, Passiatore JE, Cannon F, Wollaston-Buchanan V (1998) Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep 7:512–516

    Article  Google Scholar 

  • Christou P, Swain WF, Yang NS, McCabe DE (1989) Inheritance and expression of foreign genes in transgenic soybean plants. Proc Natl Acad Sci USA 86:7500–7504

    Article  PubMed  CAS  Google Scholar 

  • De Block M (1993) The cell biology of transformation: current state, problems, prospects and the implication for the plant breeding. Euphytica 71:1–14

    Article  Google Scholar 

  • DeClerq A, Vandewiele M, Van Damme J, Guerche P, Van Montagu M, Vandekerkhove J, Krebbers E (1990) Stable accumulation of modified 2S algumin seed storage proteins with higher methionine contents in transgenic plants. Plant Physiol 94:970–979

    Google Scholar 

  • Demidov D, Horstmann C, Meixner M, Pickardt T, Saalbach I, Galili G, Müntz K (2003) Addictive effects of the feed back-insensitive bacterial aspartate kinase and the Brazil nut 2S albumin on the methionine content of transgenic narbon bean (Vicia narbonensis L.). Mol Breed 11:187–201

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Dornelas MC, Vieira MLC, Appezzato-da-Glória B (1992) Histological analysis of organogenesis and somatic embryogenesis induced in immature tissues of Stylosanthes scabra. Ann Bot 70:477–482

    CAS  Google Scholar 

  • Edwards K, Johnston C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acid Res 19:1349

    PubMed  CAS  Google Scholar 

  • Fontes EMJ (2003) Legal and regulatory concerns about transgenic plants in Brazil. J Invert Pathol 83:100–103

    Article  Google Scholar 

  • Gander ES, Holmstroem KO, Paiva GR, Castro LAB de, Carneiro M, Grossi-de-Sá MF (1991) Isolation, characterization and expression of a gene coding for a 2S albumin from Bertholletia excelsa (Brazil nut). Plant Mol Biol 16:437–448

    Article  PubMed  CAS  Google Scholar 

  • Glund K, Tewes A, Abel S, Leinhos V, Walther R, Reinbothe H (1984) Vacuoles from cell suspension cultures of tomato (Lycopersicon esculentum) – isolation and characterization. Zeitsc Pflanzenphys 113:151–161

    CAS  Google Scholar 

  • Guerche P, Charbonnier M, Jouanin L, Tourneur C, Paszkowski J, Pelletier G (1987) Direct gene transfer by electroporation in Brassica napus. Plant Sci 52:111–116

    Article  CAS  Google Scholar 

  • Hagan ND, Upadhyaya N, Tabel M, Higgins TJ (2003) The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J 34:1–11

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Publishers, New York, pp 471

    Google Scholar 

  • Hoffmann LV, Vieira MLC (2000) Resposta in vitro e susceptibilidade ao Agrobacterium de dois cultivares de Stylosanthes guianensis (Leguminosae). Pesq Agrop Bras 35:733–742

    Google Scholar 

  • Huber SC, Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Opin Plant Biol 7:318–322

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: the β-glucuronidase as sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3301–3307

    Google Scholar 

  • Jones JDG, Dunsmuir P, Bedbrook J (1985) High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J 4:3301–3307

    Google Scholar 

  • Kao N (1977) Chromosomal behavior of somatic hybrids of soybean × Nicotiana glauca. Mol Gen Genet 150:225–230

    Article  Google Scholar 

  • Kelemu S, Changshun J, Guixi H, Segura G (2005) Genetic transformation of the tropical forage legume Stylosanthes guianensis with a rice-chitinase gene. confers resistance to Rhizoctonia foliar blight. African J Biotech 4:1025–1033

    CAS  Google Scholar 

  • Kikkert J (1993) The Biolistic® PDS-1000/HE device. Plant Cell Tissue Organ Cult 33:221–226

    Article  CAS  Google Scholar 

  • Klaus SM, Huang FC, Golds TJ, Koop HU (2003) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Plant Cell Physiol 44:1185–1191

    Article  Google Scholar 

  • Kolver ES (2003) Nutritional limitations to increased production on pasture-based systems. Proc Nutr Soc 62:291–300

    Article  PubMed  Google Scholar 

  • Kosugi S, Ohashi Y, Nakajima K, Arai Y (1987) An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci 70:133–140

    Article  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  PubMed  CAS  Google Scholar 

  • Krebbers E, Herdies L, DeClerq A, Seurink J, Leumans J, Damme J van, Segura M, Gheysen G, Montagu M van, Vandekerkhove J (1988) Determination of the processing sites of an Arabidopsis 2S albumin and characterization of the complete gene family. Plant Physiol 87:859–866

    PubMed  CAS  Google Scholar 

  • Lee TT, Wang MM, Hou RC, Chen LJ, Su RC, Wang CS, Tzen JT (2003) Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2S albumin. Biosci Biotechnol Biochem 67:1699–1705

    Article  PubMed  Google Scholar 

  • Manners JM (1987) Transformation of Stylosanthes spp. using Agrobacterium tumefaciens. Plant Cell Rep 6:204–207

    Article  CAS  Google Scholar 

  • Manners JM (1988) Transgenic plants of the tropical pasture legume Stylosanthes humilis. Plant Sci 55:61–68

    Article  CAS  Google Scholar 

  • Manners JM, Way H (1989) Efficient transformation with regeneration of the tropical pasture legume Stylosanthes humilis using Agrobacterium rhizogenes and a Ti plasmid binary vector system. Plant Cell Rep 8:341–345

    Article  CAS  Google Scholar 

  • Martin RG, Ames BN (1961) A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem 236:1372–1379

    PubMed  CAS  Google Scholar 

  • Mascia P, Flavell RB (2004) Safe and acceptable strategies for producing foreign molecules in plants. Curr Opin Plant Biol 7:189–195

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke AJ (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685

    PubMed  CAS  Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Tech 6:923–926

    Article  Google Scholar 

  • Meijer EGM, Szabados L (1991) Cell and tissue culture of Stylosanthes spp. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Legumes and oilseed crops, vol 10. Springer-Verlag, Heidelberg, pp 312–322

    Google Scholar 

  • Memelink J, Swords KMM, Staehelin LA, Hoge HC (1994) Southern, Northern and Western blot analysis. In: Gelvin SB, Schilperrort RA (eds) Plant molecular biology manual, section F. Kluwer Academic Press, Dordrecht, pp 1–23

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nordelee JA, Taylor SL, Towsend JA, Thomas LA, Bush RK (1996) Identification of a Brazil nut allergen in transgenic soybeans. New Eng J Med 334:688–692

    Article  Google Scholar 

  • Quecini VM, Vieira MLC (2001) Transient gene expression in electroporated intact tissues of Stylosanthes guianensis (Aubl.) Sw. Sci Agric 587:59–765

    Google Scholar 

  • Quecini VM, Oliveira CA, Alves AC, Vieira MLC (2002) Factors influencing electroporation-mediated gene transfer to Stylosanthes guianensis (Aubl.) Sw. protoplasts. Genet Mol Biol 25:73–80

    Article  CAS  Google Scholar 

  • Rueda BL, Blake RW, Nicholson CF, Fox DG, Tedeschi LO, Pellan M, Fernandes EC, Valentim JF, Carneiro JC (2003) Production and economic potentials of cattle in pasture-based systems of the western Amazon region of Brazil. J Anim Sci 81:2923–2937

    PubMed  CAS  Google Scholar 

  • Saalbach I, Pickard T, Machmhel F, Saalbach G, Schieder O, Müntz K (1994) A chimeric gene encoding the methionine-rich 2S albumin of Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes. Mol Gen Genet 242:226–236

    Article  PubMed  CAS  Google Scholar 

  • Saalbach I, Pickard T, Waddell DR, Hillmer S, Schieder O, Müntz K (1995) The sulphur-rich Brazil 2S albumin is specifically formed in transgenic seeds of grain legume Vicia narbonensis. Euphytica 85:181–192

    Article  CAS  Google Scholar 

  • Saalbach I, Rosso M, Schumann U (1996) The vacuolar targeting signal of the 2S albumin from Brazil nut resides at the C-terminus and involves C-terminal propeptides as an essential element. Plant Physiol 112:975–985

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Meth Enzymol 217:483–509

    Article  PubMed  CAS  Google Scholar 

  • Sarria R, Calderon A, Thro AM, Torres E, Mayer JE, Roca WM (1994) Agrobacterium-mediated transformation of Stylosanthes guianensis and production of transgenic plants. Plant Sci 96:119–127

    Article  CAS  Google Scholar 

  • Sato S, Xing A, Ye X, Schweiger B, Kinney A, Graef G, Clemente T (2004) Production of α-linoleic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop Sci 44:646–652

    Article  CAS  Google Scholar 

  • Schlüter K, Füttere J, Potrykus I (1995) “Horizontal” gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs – if at all – at an extremely low frequency. Bio/Tech 13:1094–1098

    Article  Google Scholar 

  • Schulz A, Wegenmayer F, Goodman HM (1990) Genetic engineering of herbicide resistance in higher plants. Crit Rev Plant Sci 9:1–15

    Article  CAS  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  PubMed  CAS  Google Scholar 

  • Tzifira T, Citovsky V (2003) The Agrobacterium–plant cell interaction. Taking lessons from a bug. Plant Physiol 133:1011–1023

    Article  CAS  Google Scholar 

  • Vanderstappen J, Marant S, Volckaert G (2003) Molecular characterization and phylogenetic utility of the rDNA external transcribed spacer region in Stylosanthes (Fabaceae). Theor Appl Genet 107:291–298

    Article  CAS  Google Scholar 

  • Vitale A, Hinz G (2005) Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci 10:316–323

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, Huang AHC (1981) Occurrence of low molecular weight and high cysteine-containing albumin storage proteins in oilseeds of diverse species. Am J Bot 68:44–48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by FAPESP 98/11270-7 grant to MLCV and by CNPq 141294/97-3 graduate fellowship grant to V.M.Q. We thank Prof. Dr. Flávio C. A. Tavares, Dr. Luiz Humberto Gomes and Dr. Keila M. R. Duarte for the assistance with antibody generation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quecini, V.M., Alves, A.C., Oliveira, C.A. et al. Microparticle bombardment of Stylosanthes guianensis: transformation parameters and expression of a methionine-rich 2S albumin gene. Plant Cell Tiss Organ Cult 87, 167–179 (2006). https://doi.org/10.1007/s11240-006-9151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-006-9151-x

Keywords

Navigation