Skip to main content
Log in

Susceptibility of embryogenic and organogenic tissues of maritime pine (Pinus pinaster) to antibiotics used in Agrobacterium-mediated genetic transformation

  • Original Research Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The effects of antibiotics commonly used in Agrobacterium-mediated transformation were studied on Pinus pinaster tissues. Embryogenic tissue growth from three embryogenic lines and adventitious bud induction from cotyledons from three open-pollinated seed families were analysed. Cefotaxizme, carbenicillin and timentin commonly used for Agrobacterium elimination, at concentrations of 200–400 mg l −1 did not inhibit the embryogenic tissue growth on filter paper nor as clumps. Adventitious bud induction and bud number were significantly reduced for one of the tested families when using 400 mg l−1 cefotaxime or timentin. The selection agent kanamycin significantly inhibited growth of embryogenic tissue on filter paper in all the embryogenic lines␣and concentrations tested (20–50 mg l−1). Kanamycin also inhibited growth of embryogenic clumps after two subcultures at 5–50 mg l−1. In␣cotyledons, kanamycin inhibited adventitious bud␣formation in the three seed families used, regardless of the concentrations tested (5–25 mg l−1). There was a significant effect of the seed family on the bud induction and the number of adventitious buds produced. From the results obtained, we propose the use of timentin to eliminate Agrobacterium in transformation experiments, at concentrations of 400 mg l−1 for embryogenic tissues and of 300 mg l−1 for cotyledons. For selection of transformed tissues carrying the kanamycin resistance gene, kanamycin should be used at 20 mg l−1 for embryogenic tissues on filter paper, at 5 mg l−1 when clumps are in direct contact with the selection medium, and bellow 5 mg l−1 for adventitious bud induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

6-benzyladenine

CH:

Casein hydrolysate

2,4-D:

2,4-dichlorophenoxyacetic acid

FW:

Fresh weight

NAA:

Naphthalene acetic acid

PGR:

Plant growth regulators

References

  • Cerda F, Aquea F, Gebauer M, Medina C, Arce-Johnson P (2002) Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 70:251–257

    Article  CAS  Google Scholar 

  • Charity JA, Holland L, Donaldson SS, Grace L, Walter C (2002) Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tiss Org Cult 70:51–60

    Article  CAS  Google Scholar 

  • Conover WJ (1999) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  • Ellis DD, Lazaroff WR, Roberts DR, Flinn BS, Webb DT (1989) The effect of antibiotics on elongation and callus and bud formation from embryogenic tissue of Picea glauca. Can J For Res 19:1343–1346

    CAS  Google Scholar 

  • Grant JE, Cooper PA, Dale TM (2004) Transformed Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons. Plant Cell Rep 22:894–902

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Durzan DJ (1985) Soot multiplication from mature trees of Douglas fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179

    Article  CAS  Google Scholar 

  • Holford P, Newbury HJ (1992) The effects of antibiotics and their breakdown products on the in vitro growth of Antirrhinum majus. Plant Cell Rep 11:93–96

    CAS  Google Scholar 

  • Holland L, Gemmell JE, Charity JA, Walter C (1997) Foreign gene transfer into Pinus radiata cotyledons by Agrobacterium tumefaciens. NZ J For Sci 27:289–304

    CAS  Google Scholar 

  • Hood EE, Clapham DH, Ekberg I, Johanson T (1990) T-DNA presence and opine production in tumors of Picea abies (L.) Karst induced by Agrobacterium tumefaciens A281. Plant Mol Biol 14:111–117

    Article  PubMed  CAS  Google Scholar 

  • Humara JM, Ordás RJ (1999) The toxicity of antibiotics and herbicides on in vitro adventitious shoot formation on Pinus pinea L. cotyledons. In Vitro Cell Dev Biol-Plant 35:339–343

    CAS  Google Scholar 

  • Humara JM, López M, Ordás RJ (1999) Agrobacterium tumefaciens-mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Rep 19:51–58

    Article  CAS  Google Scholar 

  • Klimaszewska K, Lachance D, Pelletier G, Lelu M-A, Séguin A (2001) Regeneration of transformed Picea glauca, P. mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell Dev Biol 37:748–755

    CAS  Google Scholar 

  • Le VQ, Belles-Isles J, Dusabenyagasani M, Tembray FM (2001) An improved procedure for production of white spruce (Picea glauca) transformed plants using Agrobacterium tumefaciens. J Exp Bot 52:2089–2095

    PubMed  CAS  Google Scholar 

  • Levée V, Lelu M-A, Jouanin L, Cornu D, Pilate G (1997) Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi X L. decidua) and transformed plant regeneration. Plant Cell Rep 16:680–685

    Article  Google Scholar 

  • Levée V, Garin E, Klimaszewska K, Séguin A (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breed 5:429–440

    Article  Google Scholar 

  • López M, Humara JM, Rodríguez R, Ordás RJ (2000) Factors involved in Agrobacterium tumefaciens-mediated gene transfer into Pinus nigra Arn. ssp. Salzmannii (Dunal) Franco. Euphytica 114:195–203

    Article  Google Scholar 

  • Miguel C, Gonçalves S, Tereso S, Marum L, Oliveira MM (2004) SE from 20 open-pollinated seed families of Portuguese plus trees of maritime pine. Plant Cell Tiss Org Cult 76:121–130

    Article  CAS  Google Scholar 

  • Mihaljević S, Perić M, Jelaska S (2001) The sensitivity of embryogenic tissue of Picea omonika (Panč.) Purk. to antibiotics. Plant Cell Tiss Org Cult 67:287–293

    Article  Google Scholar 

  • Mohammed GH, Dunstan DI, Thorpe T (1986) Influence of nutrient medium upon shoot initiation on vegetative explants excised from 15 to 18-year-old Picea glauca. NZ For Sci 16:297–305

    Google Scholar 

  • Sarma KS, Evans NE, Selby C (1995) Effect of carbenicillin and cefotaxime on somatic embryogenesis of Sitka spruce (Picea sitchensis (Bong.) Carr.) J Exp Bot 46:1779–1781

    CAS  Google Scholar 

  • Schmitt F, Oakeley EJ, Jost JP (1997) Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem 272:1534–1540

    Article  PubMed  CAS  Google Scholar 

  • Tereso S, Zoglauer K, Miguel C, Oliveira MM (2003) Genetic engineering as a tool for studies of nitrogen metabolism in maritime pine. In: International Congress Tree Biotechnology, June 2003, Ümea, Sweden

  • Tereso S (2005) In vitro culture systems for clonal propagation and genetic transformation of Pinus pinaster (Sol. ex Ait.). PhD Dissertation, Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica, Oeiras, Portugal

  • Trontin J-F, Harvengt L, Garin E, Lopez-Vernaza M, Arancio L, Hoebeke J, Canlet F, Pâques M (2002) Towards genetic engeneering of maritime pine (Pinus pinaster Ait.). Ann For Sci 59:687–697

    Article  Google Scholar 

  • Tsang EWT, David H, David A, Dunstan DI (1989) Toxicity of antibiotics on zygotic embryos of white spruce (Picea glauca) cultures in vitro. Plant Cell Rep 8:214–216

    Article  CAS  Google Scholar 

  • Verbist L, Verhaegen J (1986) Susceptibility of tricarcillin-resistant gram-negative bacilli to different combination of tricarcillin and clavulanic acid. J Antimicrob Chemother 17:7–15

    PubMed  CAS  Google Scholar 

  • Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39:407–416

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

Download references

Acknowledgments

This research was supported by Fundação para a Ciência e Tecnologia (FCT) and the III Framework Programme of the European Community, through grants SFRH/BD/1186/2000 and SFRH/BPD/14964/2004 and Project POCTI/AGR/57157/2004. Estação Florestal Nacional (EFN) is acknowledged for making plant material available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tereso, S., Miguel, C., Maroco, J. et al. Susceptibility of embryogenic and organogenic tissues of maritime pine (Pinus pinaster) to antibiotics used in Agrobacterium-mediated genetic transformation. Plant Cell Tiss Organ Cult 87, 33–40 (2006). https://doi.org/10.1007/s11240-006-9130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-006-9130-2

Keywords

Navigation