Skip to main content
Log in

Genetic transformation of prickly-pear cactus (Opuntia ficus-indica) by Agrobacterium tumefaciens

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

A system for genetic transformation of an elite prickly pear cactus (Opuntia ficus-indica L., cultivar Villa Nueva) by Agrobacterium tumefaciens was developed. Beginning with direct bacterial infection by using a hypodermic syringe to the meristematic tissue termed areoles, transgenic plants were obtained by selection with 100 mg l−1 kanamycin. Transient and stable GUS activities were monitored on kanamycin-resistant shoots and regenerated plants, respectively. Genetic transformation of regenerated plants growing under selection was demonstrated by PCR and Southern blot analysis; transgene copy number in the genome of transgenic plants ranged from two to six, while the transformation frequency obtained by the system reported here was of 3.2%. This method may be useful for routine transformation and introduction of several important genes in prickly pear cactus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bravo H (1978) Las Cactáceas de México, 2nd edn. UNAM, México, p. 735

    Google Scholar 

  • Cruz-Hernández A, Witjaksono, Litz RE, Gomez Lim M (1998) Agrobacterium tumefaciens-mediated transformation of embryogenic avocado cultures and regeneration of somatic embryos. Plant Cell Rep 17:497–503

    Article  Google Scholar 

  • Deblaere R, Bytebier B, de Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium- mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788

    Article  PubMed  CAS  Google Scholar 

  • Droste A, Pasquali G, Bodanese-Zanettini ME (2000) Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol Biol Rep 18:51–59

    Article  CAS  Google Scholar 

  • Escobar HA, Villalobos VM, Villegas A (1986) Opuntia propagation by axillary proliferation. Plant Cell Tissue Organ Cult 7:269–277

    Article  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back! Bio/Technol 12:883–888

    Article  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  CAS  Google Scholar 

  • Galili G, Galili S, Lewinsoho E, Tamor Y (2002) Genetic, molecular and genomic approaches to improve the value of plant foods and feeds. Crit Rev Plant Sci 21:167–204

    Article  CAS  Google Scholar 

  • García-Saucedo PA, Valdez-Morales M, Valverde ME, Cruz-Hernández A, Paredes-López O (2005) Plant regeneration of three Opuntia genotypes used as human food. Plant Cell Tissue Organ Cult 80:215– 219

    Article  Google Scholar 

  • Guzmán-Maldonado SH, Paredes-López O (1999) Biotechnology for the improvement of nutritional quality of food crop plants. In Paredes-López O (ed) Molecular biotechnology for plant food production. CRC Press, Boca Raton, pp 553–620

    Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotech 14:745–750

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Laimer M, Mendonça D, Maghuly F, Marzban G, Leopold S, Khan M, Balla I, Katinger H (2005) Biotechnology of temperate fruit trees and grapevines. Acta Biochem Pol 52(3):673–678

    CAS  Google Scholar 

  • Llamoca-Zárate RM, Landsmann J, Campos FAP (1998) Establishment and transformation of callus and cell suspension cultures of the cactus-pear (Opuntia ficus-indica). J PACD 4:27–36

    Google Scholar 

  • Llamoca-Zárate RM, Ponte IFA, Landsmann J, Campos FAP (1999) Biolistic-mediated transient gene expression in shoot apical meristems of the cactus-pear (Opuntia ficus-indica). Braz Arch Biol Tech 42(3):299–302

    Google Scholar 

  • Machado MDF, Prioli AJ (1996) Micropropagation of Cereus Peruvianus Mill. (Cactaceae) by areole activation. In Vitro Cell Dev Biol 32:199–203

    Google Scholar 

  • Mathews H, Litz RE, Wilde HD, Merkle SA, Wetzstein HY (1992) Stable integration and expression of glucuronidase and NPTII genes in mango somatic embryos. In Vitro Cell Dev Biol 28:172–178

    Article  Google Scholar 

  • McGranahan GH, Leslie CA, Uratsu SL y Dandekar AM (1990) Improved efficiency of the walnut somatic embryo gene transfer system. Plant Cell Rep 8:512–516

    Article  CAS  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Polito VS, McGranahan G, Pinney K, Leslie C (1989) Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): implications for Agrobacterium-mediated transformation. Plant Cell Rep 8:219–221

    Article  Google Scholar 

  • Rascón-Cruz Q, Sinagawa-García SR, Osuna-Castro JA, Bohorova N, Paredes-López O (2004) Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theor Appl Genet 108:335–342

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY. pp 1959

    Google Scholar 

  • Santacruz-Ruvalcaba F, Gutierréz-Mora A, Rodríguez-Garay B (1998) Somatic embryogenesis in some cactus and agave species. J PACD 3:15–26

    Google Scholar 

  • Silos-Espino H, Fabian L, Guevara-Lara F, Valverde-González ME, Osuna-Castro J, Paredes-López O (2003) Chemical and biochemical changes in prickly pears with different ripening behaviour. Narhung/Food 47:334–338

    Article  CAS  Google Scholar 

  • Taylor BH, Powell A (1983) Isolation of plant DNA and RNA. BRL Focus 4:4–6

    Google Scholar 

  • Valdez-Ortiz A (2005) Incorporación del cDNA modificado de amarantina en semillas de tabaco, purificación y caracterización de esta proteína de reserva y posterior incorporación de este cDNA en maíz a través de Agrobacterium tumefaciens. PhD Thesis. Centro de Investigación y de Estudios Avanzados del IPN. 2005, Irapuato, Gto. México

  • Wenzler H, Mignery G, May G, Park W (1989) A rapid and efficient transformation method for the production of large numbers of transgenic potato plants. Plant Sci 63:79–85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. J.L Cabrera-Ponce from CINVESTAV-IPN for technical help, and CONCYTEG, OMNILIFE, CONACYT, COSNET and DGETA-SEP, Mexico for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Paredes-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silos-Espino, H., Valdez-Ortiz, A., Rascón-Cruz, Q. et al. Genetic transformation of prickly-pear cactus (Opuntia ficus-indica) by Agrobacterium tumefaciens . Plant Cell Tiss Organ Cult 86, 397–403 (2006). https://doi.org/10.1007/s11240-006-9123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-006-9123-1

Keywords

Navigation