Skip to main content

Advertisement

Log in

Free fatty acids inhibit TM–EPCR expression through JNK pathway: an implication for the development of the prothrombotic state in metabolic syndrome

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Metabolic syndrome is associated with significant hypercoagulable prothrombotic tendency; however, the mechanism for the prothrombotic state is not completely understood. We hypothesize that higher circulating plasma free fatty acids (FFAs) in metabolic syndrome inhibit the endothelial thrombomodulin (TM)–endothelial protein C receptor (EPCR) pathway, thereby promoting thrombus formation. Human umbilical vein endothelial cells were cultured in media supplemented with various doses of palmitic acid (PA), in the presence or absence of JNK inhibitor, and the expression of TM and EPCR was measured by western blot. The thrombotic state of high fat fed C57BL/6J mice was examined by tail bleeding time and deep venous thrombosis (DVT) model. As a result, PA inhibited the expression of TM and EPCR in endothelial cells, and this effect was blunted by inhibiting JNK signaling. High fat diet fed mice had higher level of circulating FFAs and exhibited prothrombotic state, evidenced by increased tail bleeding time and enlarged thrombotic size in DVT model, compared to the control diet fed mice. Hence, FFAs inhibit TM–EPCR–Protein C system in endothelial cells through activating JNK signaling, which may be a mechanism for the prothrombotic state in metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ceriello A et al (1995) Hyperglycemia-induced thrombin formation in diabetes. The possible role of oxidative stress. Diabetes 44(8):924–928

    Article  PubMed  CAS  Google Scholar 

  2. Kario K et al (1995) Thrombin inhibition in the acute phase of ischaemic stroke using argatroban. Blood Coagul Fibrinolysis 6(5):423–427

    Article  PubMed  CAS  Google Scholar 

  3. Hafer-Macko CE et al (2002) Thrombomodulin deficiency in human diabetic nerve microvasculature. Diabetes 51(6):1957–1963

    Article  PubMed  CAS  Google Scholar 

  4. Kario K et al (1995) Activation of tissue factor-induced coagulation and endothelial cell dysfunction in non-insulin-dependent diabetic patients with microalbuminuria. Arterioscler Thromb Vasc Biol 15(8):1114–1120

    Article  PubMed  CAS  Google Scholar 

  5. Vehar GA, Davie EW (1980) Preparation and properties of bovine factor VIII (antihemophilic factor). Biochemistry 19(3):401–410

    Article  PubMed  CAS  Google Scholar 

  6. Isermann B et al (2001) Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest 108(4):537–546

    PubMed  CAS  Google Scholar 

  7. D’Angelo A et al (1987) Protein S is a cofactor for activated protein C neutralization of an inhibitor of plasminogen activation released from platelets. Blood 69(1):231–237

    PubMed  Google Scholar 

  8. Cheng T et al (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9(3):338–342

    Article  PubMed  CAS  Google Scholar 

  9. Van de Wouwer M, Conway EM (2004) Novel functions of thrombomodulin in inflammation. Crit Care Med 32(5 Suppl):S254–S261

    Article  PubMed  Google Scholar 

  10. Laws A et al (1997) Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status. Relation to plasma triglyceride and apolipoprotein B concentrations. Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Arterioscler Thromb Vasc Biol 17(1):64–71

    Article  PubMed  CAS  Google Scholar 

  11. Groop LC et al (1991) The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 72(1):96–107

    Article  PubMed  CAS  Google Scholar 

  12. Carlsson M et al (2000) High levels of nonesterified fatty acids are associated with increased familial risk of cardiovascular disease. Arterioscler Thromb Vasc Biol 20(6):1588–1594

    Article  PubMed  CAS  Google Scholar 

  13. Jouven X et al (2001) Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation 104(7):756–761

    Article  PubMed  CAS  Google Scholar 

  14. Wang XL et al (2006) Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes 55(8):2301–2310

    Article  PubMed  CAS  Google Scholar 

  15. Sambrano GR et al (2001) Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413(6851):74–78

    Article  PubMed  CAS  Google Scholar 

  16. Carr ME (2001) Diabetes mellitus: a hypercoagulable state. J Diabetes Complications 15(1):44–54

    Article  PubMed  CAS  Google Scholar 

  17. Iwashima Y et al (1990) Elevation of plasma thrombomodulin level in diabetic patients with early diabetic nephropathy. Diabetes 39(8):983–988

    Article  PubMed  CAS  Google Scholar 

  18. Laszik ZG et al (2001) Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis. Am J Pathol 159(3):797–802

    Article  PubMed  CAS  Google Scholar 

  19. Lentz SR, Tsiang M, Sadler JE (1991) Regulation of thrombomodulin by tumor necrosis factor-alpha: comparison of transcriptional and posttranscriptional mechanisms. Blood 77(3):542–550

    PubMed  CAS  Google Scholar 

  20. Ishii H et al (1996) Oxidized low density lipoprotein reduces thrombomodulin transcription in cultured human endothelial cells through degradation of the lipoprotein in lysosomes. J Biol Chem 271(14):8458–8465

    Article  PubMed  CAS  Google Scholar 

  21. Sperry JL et al (2003) Wall tension is a potent negative regulator of in vivo thrombomodulin expression. Circ Res 92(1):41–47

    Article  PubMed  CAS  Google Scholar 

  22. Yamashita T et al (2003) Thrombomodulin and tissue factor pathway inhibitor in endocardium of rapidly paced rat atria. Circulation 108(20):2450–2452

    Article  PubMed  Google Scholar 

  23. Kim HK et al (2007) Lipopolysaccharide down-regulates the thrombomodulin expression of peripheral blood monocytes: effect of serum on thrombomodulin expression in the THP-1 monocytic cell line. Blood Coagul Fibrinolysis 18(2):157–164

    Article  PubMed  CAS  Google Scholar 

  24. Wilson PW, Grundy SM (2003) The metabolic syndrome: practical guide to origins and treatment: Part I. Circulation 108(12):1422–1424

    Article  PubMed  Google Scholar 

  25. Perseghin G et al (1997) Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study. Diabetes 46(6):1001–1009

    Article  PubMed  CAS  Google Scholar 

  26. Baldeweg SE et al (2000) Insulin resistance, lipid and fatty acid concentrations in 867 healthy Europeans. European Group for the Study of Insulin Resistance (EGIR). Eur J Clin Invest 30(1):45–52

    Article  PubMed  CAS  Google Scholar 

  27. Bolinder J et al (2000) Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects. Diabetes 49(5):797–802

    Article  PubMed  CAS  Google Scholar 

  28. Uwaifo GI, Ratner RE (2003) The roles of insulin resistance, hyperinsulinemia, and thiazolidinediones in cardiovascular disease. Am J Med 115(Suppl 8A):12S–19S

    Article  PubMed  CAS  Google Scholar 

  29. Steinberg HO et al (1997) Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 100(5):1230–1239

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen MT et al (2005) JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 280(42):35361–35371

    Article  PubMed  CAS  Google Scholar 

  31. Collins QF et al (2006) p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J Biol Chem 281(34):24336–24344

    Article  PubMed  CAS  Google Scholar 

  32. Shen YH et al (2006) Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem 281(12):7727–7736

    Article  PubMed  CAS  Google Scholar 

  33. Mustonen P, van Willigen G, Lassila R (2001) Epinephrine–via activation of p38-MAPK–abolishes the effect of aspirin on platelet deposition to collagen. Thromb Res 104(6):439–449

    Article  PubMed  CAS  Google Scholar 

  34. Steffel J et al (2005) Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation 111(13):1685–1689

    Article  PubMed  CAS  Google Scholar 

  35. Stahli BE et al (2006) Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circ Res 99(2):149–155

    Article  PubMed  Google Scholar 

  36. Hirosumi J et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336

    Article  PubMed  CAS  Google Scholar 

  37. Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2(7):554–565

    Article  PubMed  CAS  Google Scholar 

  38. Aguirre V et al (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275(12):9047–9054

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W., Zhai, Z., Yang, Y. et al. Free fatty acids inhibit TM–EPCR expression through JNK pathway: an implication for the development of the prothrombotic state in metabolic syndrome. J Thromb Thrombolysis 34, 468–474 (2012). https://doi.org/10.1007/s11239-012-0793-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0793-8

Keywords

Navigation