Skip to main content
Log in

Coagulation and fibrinolytic protein kinetics in cardiopulmonary bypass

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

The development of Cardiopulmonary Bypass (CPB) catopulted the field of cardiothoracic surgery into a new dimension—one that changed the lives of individuals with congenital and acquired heart disease worldwide. Despite its contributions, CPB has clear limitations and creates unique challenges for clinicians and patients alike, stemming from profound hemostatic pertubations and accompanying risk for bleeding and possibly thrombotic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Jaegere PP, Suyker WJ (2002) Off-pump coronary artery bypass surgery. Heart 88:313–318

    Article  PubMed  Google Scholar 

  2. Abu-Omar Y, Taggart DP (2002) Off-pump coronary artery bypass grafting. Lancet 360:327–330

    Article  PubMed  Google Scholar 

  3. Rosamond W, Flegal K, Friday G et al (2007) American Heart Association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics-2007 update: a report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation 115(5):e69–e171

    Article  PubMed  Google Scholar 

  4. Hekmat K, Zimmermann T, Kampe S et al (2004) Impact of tranexamic acid vs. aprotinin on blood loss and transfusion requirements after cardiopulmonary bypass: a prospective, randomised, double-blind trial. Curr Med Res Opin 20(1):121–126

    Article  PubMed  CAS  Google Scholar 

  5. Parolari A, Colli S, Mussoni L et al (2003) Coagulation and fibrinolytic markers in a two-month follow-up of coronary bypass surgery. J Thorac Cardiovasc Surg 125(2):336–343

    Article  PubMed  Google Scholar 

  6. Despotis GJ, Avidan MS, Hogue CW Jr (2001) Mechanisms and attenuation of hemostatic activation during extracorporeal circulation. Ann Thorac Surg 72(5):S1821–S1831

    Article  PubMed  CAS  Google Scholar 

  7. Dacey LJ, Munoz JJ, Baribeau YR et al (1998) Reexploration for hemorrhage following coronary artery bypass grafting: incidence and risk factors. Northern New England Cardiovascular Disease Study Group. Arch Surg 133(4):442–447

    Article  PubMed  CAS  Google Scholar 

  8. Sellman M, Intonti MA, Ivert T (1997) Reoperations for bleeding after coronary artery bypass procedures during 25 years. Eur J Cardiothorac Surg 11(3):521–527

    Article  PubMed  CAS  Google Scholar 

  9. Bevan DH (1999) Cardiac bypass haemostasis: putting blood through the mill. Br J Haematol 104(2):208–219

    Article  PubMed  CAS  Google Scholar 

  10. Nuttall GA, Erchul DT, Haight TJ et al (2003) A comparison of bleeding and transfusion in patients who undergo coronary artery bypass grafting via sternotomy with and without cardiopulmonary bypass. J Cardiothorac Vasc Anesth 17(4):447–451

    Article  PubMed  Google Scholar 

  11. Hunt BJ, Parratt RN, Segal HC, Sheikh S, Kallis P, Yacoub M (1998) Activation of coagulation and fibrinolysis during cardiothoracic operations. Ann Thorac Surg 65(3):712–718

    Article  PubMed  CAS  Google Scholar 

  12. Biglioli P, Cannata A, Alamanni F et al (2003) Biological effects of off-pump vs. on-pump coronary artery surgery: focus on inflammation, hemostasis and oxidative stress. Eur J Cardiothorac Surg 24(2):260–269

    Article  PubMed  Google Scholar 

  13. Kirklin JK, Westaby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD (1983) Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 86:845–857

    PubMed  CAS  Google Scholar 

  14. Hyde JA, Chinn JA, Graham TR (1998) Platelets and cardiopulmonary bypass. Perfusion 13(6):389–407

    PubMed  CAS  Google Scholar 

  15. Iaizzo PA (ed) (2005) Handbook of cardiac anatomy, physiology, and devices. Humana Press, Totowa, NJ

    Google Scholar 

  16. Hathcock JJ (2006) Flow effects on coagulation and thrombosis. Arterioscler Thromb Vasc Biol 26(8):1729–1737

    Article  PubMed  CAS  Google Scholar 

  17. Davie EW, Ratnoff OD (1964) Waterfall sequence for intrinsic blood clotting. Science 145:1310–1312

    Article  PubMed  CAS  Google Scholar 

  18. Boisclair MD, Lane DA. Philippou H et al (1993) Mechanisms of thrombin generation during surgery and cardiopulmonary bypass. Blood 82(11):3350–3357

    PubMed  CAS  Google Scholar 

  19. Edmunds LH Jr, Colman RW (2006) Thrombin during cardiopulmonary bypass. Ann Thorac Surg 82(6):2315–2322

    Article  PubMed  Google Scholar 

  20. Gikakis N, Rao AK, Miyamoto S et al (1998) Enoxaparin suppresses thrombin formation and activity during cardiopulmonary bypass in baboons. J Thorac Cardiovasc Surg 116(6):1043–1051

    Article  PubMed  CAS  Google Scholar 

  21. Moor E, Hamsten A, Blomback M, Herzfeld I, Wiman B, Ryden L (1994) Haemostatic factors and inhibitors and coronary artery bypass grafting: preoperative alterations and relations to graft occlusion. Thromb Haemost 72(3):335–342

    PubMed  CAS  Google Scholar 

  22. Despotis GJ, Joist JH (1999) Anticoagulation and anticoagulation reversal with cardiac surgery involving cardiopulmonary bypass: an update. J Cardiothorac Vasc Anesth 13(4 Suppl 1):18–29; discussion 36–7

    PubMed  CAS  Google Scholar 

  23. Gorman RC, Ziats N, Rao AK et al (1996) Surface-bound heparin fails to reduce thrombin formation during clinical cardiopulmonary bypass. J Thorac Cardiovasc Surg 111(1):1–11

    Article  PubMed  CAS  Google Scholar 

  24. Hirsh J (2003) Current anticoagulant therapy—unmet clinical needs. Thromb Res 109(Suppl 1):S1–S8

    Article  PubMed  CAS  Google Scholar 

  25. Edmunds LH Jr (1993) Blood-surface interactions during cardiopulmonary bypass. J Card Surg 8(3):404–410

    Article  PubMed  Google Scholar 

  26. Casati V, Gerli C, Franco A et al (2001) Activation of coagulation and fibrinolysis during coronary surgery: on-pump versus off-pump techniques. Anesthesiology 95(5):1103–1109

    Article  PubMed  CAS  Google Scholar 

  27. Spanier TB, Oz MC, Minanov OP et al (1998) Heparinless cardiopulmonary bypass with active-site blocked factor IXa: a preliminary study on the dog. J Thorac Cardiovasc Surg 115(5):1179–1188

    Article  PubMed  CAS  Google Scholar 

  28. Irvine L, Sundaram S, Courtney JM, Taggart DP, Wheatley DJ, Lowe GDO (1991) Monitoring of factor XII activity and granulocyte elastase release during cardiopulmonary bypass. ASAIO Trans 37:569–571

    PubMed  CAS  Google Scholar 

  29. van der Kamp KW, van Oeveren W (1993) Contact, coagulation and platelet interaction with heparin treated equipment during heart surgery. Int J Artif Organs 16(12):836–842

    PubMed  Google Scholar 

  30. Philippou H, Adami A, Boisclair MD, Lane DA (1995) An ELISA for factor X activaton peptide: application to the investigation of thrombogenesis in cardiopulmonary bypass. Br J Haematol 90:432–437

    Article  PubMed  CAS  Google Scholar 

  31. Burman JF, Chung HI, Lane DA, Philippou H, Adami A, Lincoln JCR (1994) Role of factor XII in thrombin generation and fibrinolysis during cardiopulmonary bypass. Lancet 344:1192–1193

    Article  PubMed  CAS  Google Scholar 

  32. Koster A, Fischer T, Gruendel M et al (2003) Management of heparin resistance during cardiopulmonary bypass: the effect of five different anticoagulation strategies on hemostatic activation. J Cardiothorac Vasc Anesth 17(2):171–175

    Article  PubMed  Google Scholar 

  33. Chung JH, Gikakis N, Rao AK, Drake TA, Colman RW, Edmunds LH Jr (1996) Pericardial blood activated the extrinsic coagulation pathway during clinical cardiopulmonary bypass. Circulation 93:201412018

    PubMed  CAS  Google Scholar 

  34. Kappelmeyer J, Bernabei A, Edmunds LH Jr, Edgington TS, Colman RW (1993) Tissue factor is expressed on monocytes during simulated extracorporeal circulation. Circ Res 72:1075–1081

    Google Scholar 

  35. Giesen PL, Rauch U, Bohrmann B et al (1999) Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 96(5):2311–2315

    Article  PubMed  CAS  Google Scholar 

  36. McEver RP (2001) Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost 86(3):746–56

    PubMed  CAS  Google Scholar 

  37. Goel MS, Diamond SL (2001) Neutrophil enhancement of fibrin deposition under flow through platelet-dependent and -independent mechanisms. Arterioscler Thromb Vasc Biol 21(12):2093–2098

    Article  PubMed  CAS  Google Scholar 

  38. Osterud B, Bjorklid E (2006) Sources of tissue factor. Semin Thromb Hemost 32(1):11–23

    Article  PubMed  Google Scholar 

  39. Khan MM, Hattori T, Niewiarowski S, Edmunds LH Jr, Colman RW (2006) Truncated and microparticle-free soluble tissue factor bound to peripheral monocytes preferentially activate factor VII. Thromb Haemost 95(3):462–468

    PubMed  CAS  Google Scholar 

  40. Maroney SA, Haberichter SL, Friese P et al (2007) Active tissue factor pathway inhibitor is expressed on the surface of coated platelets. Blood 109(5):1931–1197

    Article  PubMed  CAS  Google Scholar 

  41. Morange PE, Blankenberg S, Alessi MC et al (2007) Prognostic value of plasma tissue factor and tissue factor pathway inhibitor for cardiovascular death in patients with coronary artery disease: the AtheroGene study. J Thromb Haemost 5(3):475–482

    Article  PubMed  CAS  Google Scholar 

  42. Parratt R, Hunt BJ (1998) Direct activation of factor X by monocytes occurs during cardiopulmonary bypass. Br J Haematol 101(1):40–46

    Article  PubMed  CAS  Google Scholar 

  43. Hattori T, Khan MM, Colman RW, Edmunds LH Jr (2005) Plasma tissue factor plus activated peripheral mononuclear cells activate factors VII and X in cardiac surgical wounds. J Am Coll Cardiol 46(4):707–713

    Article  PubMed  CAS  Google Scholar 

  44. Bauer KA, Kass BL, Cate HT, Hawiger JJ, Rosenberg RD (1990) Factor IX is activated in vivo by the tissue factor mechanism. Blood 76(4):731–736

    PubMed  CAS  Google Scholar 

  45. Osterud B, Rapaport SI (1977) Activation of factor IX by the reaction product of tissue factor, factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci USA 74(12):5260–5264

    Article  PubMed  CAS  Google Scholar 

  46. Walsh PN (2003) Roles of factor XI, platelets and tissue factor initiated blood coagulation. J Thromb Haemost 1:2081–2086

    Article  PubMed  CAS  Google Scholar 

  47. Gelb AB, Roth RI, Levin J et al (1996) Changes in blood coagulation during and following cardiopulmonary bypass: lack of correlation with clinical bleeding. Am J Clin Pathol 106(1):87–99

    PubMed  CAS  Google Scholar 

  48. Mammen EF, Koets MH, Washington BC et al (1985) Hemostasis changes during cardiopulmonary bypass surgery. Semin Thromb Hemost 11(3):281–292

    Article  PubMed  CAS  Google Scholar 

  49. Harker LA, Malpass TW, Branson HE, Hessel EA 2nd, Slichter SJ (1980) Mechanism of abnormal bleeding in patients undergoing cardiopulmonary bypass: acquired transient platelet dysfunction associated with selective alpha-granule release. Blood 56(5):824–834

    PubMed  CAS  Google Scholar 

  50. Wolk LA, Wilson RF, Burdick M et al (1985) Changes in antithrombin, antiplasmin, and plasminogen during and after cardiopulmonary bypass. Am Surg 51(6):309–313

    PubMed  CAS  Google Scholar 

  51. Kongsgaard UE, Smith-Erichsen N, Geiran O, Bjornskau L (1989) Changes in the coagulation and fibrinolytic systems during and after cardiopulmonary bypass surgery. Thorac Cardiovasc Surg 37(3):158–162

    Article  PubMed  CAS  Google Scholar 

  52. Steinbrueckner BE, Steigerwald U, Keller F, Neukam K, Elert O, Babin-Ebell J (1995) Centrifugal and roller pumps—are there differences in coagulation and fibrinolysis during and after cardiopulmonary bypass?. Heart Vessel 10(1):46–53

    Article  CAS  Google Scholar 

  53. Schoeffel D, Schimpf K, Krier C (1986) Selected blood coagulation parameters during extracorporeal circulation. Behring Inst Mitt 79:104–111

    PubMed  Google Scholar 

  54. Marengo-Rowe AJ, Lambert CJ, Leveson JE et al (1979) The evaluation of hemorrhage in cardiac patients who have undergone extracorporeal circulation. Transfusion 19(4):426–433

    Article  PubMed  CAS  Google Scholar 

  55. Pelletier MP, Solymoss S, Lee A, Chiu RC (1998) Negative reexploration for cardiac postoperative bleeding: can it be therapeutic? Ann Thorac Surg 66(4):1472

    Google Scholar 

  56. Ucar HI, Oc M, Tok M et al (2007) Preoperative fibrinogen levels as a predictor of postoperative bleeding after open heart surgery. Heart Surg Forum 10(5):E392–E396

    Article  PubMed  Google Scholar 

  57. Godje O, Gallmeier U, Schelian M, Grunewald M, Mair H (2006) Coagulation factor XIII reduces postoperative bleeding after coronary surgery with extracorporeal circulation. Thorac Cardiovasc Surg 54(1):26–33

    Article  PubMed  CAS  Google Scholar 

  58. Mannucci PM, Levi M (2007) Prevention and treatment of major blood loss. N Engl J Med 356(22):2301–2311

    Article  PubMed  CAS  Google Scholar 

  59. Perthel M, Klingbeil A, El-Ayoubi L, Gerick M, Laas J (2007) Reduction in blood product usage associated with routine use of mini bypass systems in extracorporeal circulation. Perfusion 22(1):9–14

    Article  PubMed  CAS  Google Scholar 

  60. Borrelli U, Al-Attar N, Detroux M et al (2007) Compact extracorporeal circulation: reducing the surface of cardiopulmonary bypass to improve outcomes. Surg Technol Int 16:159–166

    PubMed  Google Scholar 

  61. Palmer G, Herbert MA, Prince SL et al (2007) Coronary Artery Revascularization (CARE) registry: an observational study of on-pump and off-pump coronary artery revascularization. Ann Thorac Surg 83(3):986–991; discussion 991–2

    Article  PubMed  Google Scholar 

  62. Chandler WL, Velan T (2003) Secretion of tissue plasminogen activator and plasminogen activator inhibitor 1 during cardiopulmonary bypass. Thromb Res 112(3):185–192

    Article  PubMed  CAS  Google Scholar 

  63. Chandler WL, Velan T (2004) Plasmin generation and D-dimer formation during cardiopulmonary bypass. Blood Coagul Fibrinolysis 15(7):583–591

    PubMed  CAS  Google Scholar 

  64. Gando S, Kameue T, Sawamura A, Hayakawa M, Hoshino H, Kubota N (2007) An alternative pathway for fibrinolysis is activated in patients who have undergone cardiopulmonary bypass surgery and major abdominal surgery. Thromb Res 120(1):87–93

    Article  PubMed  CAS  Google Scholar 

  65. Jimenez Rivera JJ, Iribarren JL, Raya JM et al (2007) Factors associated with excessive bleeding in cardiopulmonary bypass patients: a nested case-control study. J Cardiothorac Surg 2:17

    Article  PubMed  Google Scholar 

  66. Knudsen L, Hasenkam JM, Kure HH et al (1996) Monitoring thrombin generation with prothrombin fragment 1.2 assay during cardiopulmonary bypass surgery. Thromb Res 84(1):45–54

    Article  PubMed  CAS  Google Scholar 

  67. Welters I, Menges T, Ballesteros M et al (1998) Thrombin generation and activation of the thrombomodulin protein C system in open heart surgery depend on the underlying cardiac disease. Thromb Res 92(1):1–9

    Article  PubMed  CAS  Google Scholar 

  68. Philippou H, Davidson SJ, Mole MT, Pepper JR, Burman JF, Lane DA (1999) Two-chain factor VIIa generated in the pericardium during surgery with cardiopulmonary bypass: relationship to increased thrombin generation and heparin concentration. Arterioscler Thromb Vasc Biol 19(2):248–254

    PubMed  CAS  Google Scholar 

  69. Davey FR, Parker FB (1976) Delayed hemostatic changes following cardiopulmonary bypass. Am J Med Sci 271(2):171–178

    Article  PubMed  CAS  Google Scholar 

  70. Ernofsson M, Thelin S, Siegbahn A (1997) Monocyte tissue factor expression, cell activation, and thrombin formation during cardiopulmonary bypass: a clinical study. J Thorac Cardiovasc Surg 113(3):576–584

    Article  PubMed  CAS  Google Scholar 

  71. Mannucci L, Gerometta P, Mussoni L et al (1995) One month follow-up of haemostatic variables in patients undergoing aortocoronary bypass surgery. Thromb Haemost 73:356–361

    PubMed  CAS  Google Scholar 

  72. Milam JD, Austin SF, Martin RF, Keats AS, Cooley DA (1981) Alteration of coagulation and selected clinical chemistry parameters in patients undergoing open heart surgery without transfusions. Am J Clin Pathol 76(2):155–162

    PubMed  CAS  Google Scholar 

  73. De Somer F, Van Belleghem Y, Caes F et al (2002) Tissue factor as the main activator of the coagulation system during cardiopulmonary bypass. J Thorac Cardiovasc Surg 123(5):951–958

    Article  PubMed  CAS  Google Scholar 

  74. Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC et al (1997) Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 96(10):3534–3541

    PubMed  CAS  Google Scholar 

  75. Tabuchi N, Haan J, Boonstra PW, van Oeveren W (1993) Activation of fibrinolysis in the pericardial cavity during cardiopulmonary bypass. J Thorac Cardiovasc Surg 106:828–833

    PubMed  CAS  Google Scholar 

  76. Moor E, Blomback M, Silveira A et al (2000) Haemostatic function in patients undergoing coronary artery bypass grafting: peroperative perturbations and relations to saphenous vein graft closure. Thromb Res 98(1):39–49

    Article  PubMed  CAS  Google Scholar 

  77. Moor E, Silveira A, van’t Hooft F et al (1998) Coagulation factor V (Arg506—>Gln) mutation and early saphenous vein graft occlusion after coronary artery bypass grafting. Thromb Haemost 80(2):220–224

    PubMed  CAS  Google Scholar 

  78. Blessing F, Jaeger BR, Oberhoffer M, Reichart B, Seidel D (2003) Prevention of early graft occlusion after coronary bypass grafting by post-operative reduction of plasma fibrinogen by H.E.L.P. apheresis. First evaluation of 12 patients treated during our study (44 bypasses). Z Kardiol 92(Suppl 3):III42–III47

    PubMed  CAS  Google Scholar 

  79. Holloway DS, Summaria L, Sandesara J, Vagher JP, Alexander JC, Caprini JA (1988) Decreased platelet number and function and increased fibrinolysis contribute to postoperative bleeding in cardiopulmonary bypass patients. Thromb Haemost 59(1):62–67

    PubMed  CAS  Google Scholar 

  80. Morariu AM, Maathuis MH, Asgeirsdottir SA et al (2006) Acute isovolemic hemodilution triggers proinflammatory and procoagulatory endothelial activation in vital organs: role of erythrocyte aggregation. Microcirculation 13(5):397–409

    Article  PubMed  CAS  Google Scholar 

  81. Dial S, Delabays E, Albert M et al (2005) Hemodilution and surgical hemostasis contribute significantly to transfusion requirements in patients undergoing coronary artery bypass. J Thorac Cardiovasc Surg 130(3):654–661

    Article  PubMed  Google Scholar 

  82. Potger KC, McMillan D, Southwell J, Connolly T, Smith KK, Ambrose M (2007) Transfusion and bleeding in coronary artery bypass grafting: an on-pump versus off-pump comparison. J Extra Corpor Technol 39(1):24–30

    PubMed  Google Scholar 

  83. Walpoth BH, Amport T, Schmid R et al (1994) Hemofiltration during cardiopulmonary bypass: quality assessment of hemoconcentrated blood. Thorac Cardiovasc Surg 42(3):162–169

    Article  PubMed  CAS  Google Scholar 

  84. Boodhwani M, Williams K, Babaev A, Gill G, Saleem N, Rubens FD (2006) Ultrafiltration reduces blood transfusions following cardiac surgery: A meta-analysis. Eur J Cardiothorac Surg 30(6):892–897

    Article  PubMed  Google Scholar 

  85. Aldea GS, Doursounian M, O’Gara P et al (1996) Heparin-bonded circuits with a reduced anticoagulation protocol in primary CABG: a prospective, randomized study. Ann Thorac Surg 62(2):410–417; discussion 417–8

    Article  PubMed  CAS  Google Scholar 

  86. Marchetti M, Barosi G (2000) Cost-effectiveness of epoetin and autologous blood donation in reducing allogenic blood transfusion in coronary artery bypass graft surgery. Transfusion 40:673–681

    Article  PubMed  CAS  Google Scholar 

  87. Ascione R, Lloyd CT, Underwood MJ, Lotto AA, Pitsis AA, Angelini GD (1999) Economic outcome of off-pump coronary artery bypass surgery: a prospective randomized study. Ann Thorac Surg 68(6):2237–2244

    Article  PubMed  CAS  Google Scholar 

  88. Burman JF, Westlake AS, Davidson SJ et al (2002) Study of five cell salvage machines in coronary artery surgery. Transfus Med 12(3):173–179

    Article  PubMed  CAS  Google Scholar 

  89. Hall RI, Schweiger IM, Finlayson DC (1990) The benefit of the Hemonetics cell saver apparatus during cardiac surgery. Can J Anaesth 37(6):618–623

    PubMed  CAS  Google Scholar 

  90. Rougé P, Fourquet D, Depoix-Joseph JP, Nguyen F, Barthélémy R (1993) Heparin removal in three intraoperative blood savers in cardiac surgery. Appl Cardiopulm Pathophysiol 5(1):5–8

    PubMed  Google Scholar 

  91. Johnell M, Elgue G, Larsson R, Larsson A, Thelin S, Siegbahn A (2002) Coagulation, fibrinolysis, and cell activation in patients and shed mediastinal blood during coronary artery bypass grafting with a new heparin-coated surface. J Thorac Cardiovasc Surg 124(2):321–332

    Article  PubMed  Google Scholar 

  92. Cleveland JC Jr, Shroyer AL, Chen AY, Peterson E, Grover FL (2001) Off-pump coronary artery bypass grafting decreases risk-adjusted mortality and morbidity. Ann Thorac Surg 72(4):1282–1288; discussion 1288–9

    Article  PubMed  Google Scholar 

  93. Mariani MA, Gu YJ, Boonstra PW, Grandjean JG, van Oeveren W, Ebels T (1999) Procoagulant activity after off-pump coronary operation: is the current anticoagulation adequate?. Ann Thorac Surg 67:1370–1375

    Article  PubMed  CAS  Google Scholar 

  94. Paparella D, Galeone A, Venneri MT et al (2006) Activation of the coagulation system during coronary artery bypass grafting: comparison between on-pump and off-pump techniques. J Thorac Cardiovasc Surg 131(2):290–297

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Amin Mahnam, Jo J Hunt, Matthew D Carney and the Duke University Writing Center for their assistance with manuscript preparation. Frederick Spencer, MD served as guest editor for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, M., Becker, R.C. Coagulation and fibrinolytic protein kinetics in cardiopulmonary bypass. J Thromb Thrombolysis 27, 95–104 (2009). https://doi.org/10.1007/s11239-007-0187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-007-0187-5

Keywords

Navigation