Skip to main content
Log in

Optimization implementation of solution concepts for cooperative games with stochastic payoffs

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

In this paper, we study solution concepts for cooperative games with stochastic payoffs. we define four kinds of solution concepts, namely the most coalitional (marginal) stable solution and the fairest coalitional (marginal) solution, by minimizing the total variance of excesses of coalitions (individual players). All these four concepts are optimal solutions of corresponding optimal problem under the least square criterion. It turns out that the fairest coalitional (marginal) solution belongs to the set of the most coalitional (marginal) stable solutions. Inspired by the definition of nucleolus, we propose various extended nucleolus based on lexicographic criterion. Furthermore, axiomatizations of the proposed solutions are exhibited through the linkage between the stochastic and deterministic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumann, R. J., & Maschler, M. (1985). Game theoretic analysis of a bankruptcy problem from the Talmud. Journal of Economic Theory., 36(2), 195–213.

    Article  Google Scholar 

  • Charnes, A., & Granot, D. (1973). Prior solutions: Extensions of convex nucleolus solutions to chance-constrained games. Proceeding of the Computer Science and Statistics Seventh Stmposium at Iowa State University, 323-332.

  • Charnes, A., & Granot, D. (1976). Coalitional and chance-constrained solutions to N-person games I. SIAM Journal on Applied Mathematics, 31, 358–367.

    Article  Google Scholar 

  • Charnes, A., & Granot, D. (1977). Coalitional and chance-constrained solutions to N-person games II. Operations Research, 25, 1013–1019.

    Article  Google Scholar 

  • Curiel, I., Pederzoli, G., & Tijs, S. H. (1989). Squencing games. European Journal of Operational Research, 40, 344–351.

    Article  Google Scholar 

  • Davis, M., & Maschler, M. (1965). The Kernel of a cooperative game. Naval Research Logistics Quarterly, 12, 223–259.

    Article  Google Scholar 

  • Driessen, T. S. H. (1988). Cooperative Games. Dordrecht, The Netherlands: Solutions and Applications. Kluwer Academic Publishers.

    Google Scholar 

  • Driessen, T. S. H., & Funaki, Y. (1991). Coincidence of and collinearity between game theoretic solutions. OR Spectrum, 13(1), 15–30.

    Article  Google Scholar 

  • Dubey, P., Neyman, A., & Weber, J. (1981). Value theory without efficiency. Mathematics of Operations Research, 6(1), 122–128.

    Article  Google Scholar 

  • Fernandez, F. R., Puerto, J., & Zafra, M. J. (2002). Cores of stochastic cooperative games with stochastic orders. International Game Theory Review, 4(3), 265–280.

    Article  Google Scholar 

  • Gillies, D.B. (1953). Some theorems on \(n\) person games. Ph.D. Thesis. Princeton University Press, Princeton, New Jersey.

  • Granot, D. (1977). Cooperative games in stochastic function form. Management Science, 23, 621–630.

    Article  Google Scholar 

  • Grotte, J. H. (1976). Dynamics of cooperative games. International Journal of Game Theory, 5, 27–64.

    Article  Google Scholar 

  • Helga, H. P., & Jean, J. H. (2013). Stochastic bankruptcy games. International Journal of Game Theory, 42, 973–988.

    Article  Google Scholar 

  • Hou, D., Sun, P., Xu, G., & Driessen, T. S. H. (2018). Compromise for the complaint: an optimization approach to the ENSC value and the CIS value. Journal of the Operational Research Society, 69(4), 571–579.

    Article  Google Scholar 

  • Maschler, M., Peleg, B., & Shapley, L. S. (1979). Geometric properties of the kernel, nucleolus and related solution concepts. Mathematical Methods of Operations Research, 4, 303–338.

    Article  Google Scholar 

  • Moulin, H. (1985). The separability axiom and equal-sharing methods. Journal of Economic Theory, 36(1), 120–148.

    Article  Google Scholar 

  • Nelson, A. U. (2015). Stochastic linear programming games with concave preferences. European Journal of Operational Research, 243, 637–646.

    Article  Google Scholar 

  • Nowak, A., & Radzik, T. (1994). A solidarity value for n-person TU games. International Journal of Game Theory, 23, 43–48.

    Article  Google Scholar 

  • O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathematical Social Sciences., 2(4), 345–371.

    Article  Google Scholar 

  • Owen, G. (1975). On the core of linear production games. Mathematical Programming, 9, 358–370.

    Article  Google Scholar 

  • Özen, U., Fransoo, J., Norde, H., & Slikker, M. (2008). Cooperation between multiple newavendors with warehouses. Manufacturing & Service Operations Management, 10(2), 311–324.

    Article  Google Scholar 

  • Ruiz, L. M., Valenciano, F., & Zarzuelo, J. M. (1996). The least square prenucleolus and the least square nuvleolus. International Journal of Game Theory, 25, 113–134.

    Article  Google Scholar 

  • Ruiz, L. M., Valenciano, F., & Zarzuelo, J. M. (1998). The family of least square values for transferable utility games. Games and Economic Behavior, 24, 109–130.

    Article  Google Scholar 

  • Ruiz, L. M., Valenciano, F., & Zarzuelo, J. M. (1998). Some new results on least square values for TU games. TOP, 6, 139–158.

    Article  Google Scholar 

  • Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal on Applied Mathematics, 17, 517–520.

    Article  Google Scholar 

  • Shapley, L. S. (1953). A value for n-person Games. Annals of Mathematics Studies, 28, 307–317.

    Google Scholar 

  • Sobolev, A.I. (1975). The characterization of optimimality princples in cooperative games by functional equations (in Russian). Vorobjev NN(Ed) Mathematical Methods in the Social Sciences 6, Academy of Sciences of the Lithuanian SSR, Vilnius 94,151.

  • Suijs J., & Borm P. (1996). Cooperative Games with Stochastic Payoffs: Deterministic Equivalents. (FEW Research Memorandum; Vol. 713). Tilburg: Operations research.

  • Suijs, J., Borm, P., Waegenaere, D. A., & Tijs, S. H. (1999). Cooperative games with stochastics payoffs. European Journal of Operational Research, 113, 193–205.

    Article  Google Scholar 

  • Suijs, J. (2000). Price uncertainty in linear production situations. Cooperative Decision-Making Under Risk 63-87, Kluwer.

  • Xu, N., Arthur, F., & Veinott, Jr. (2013). Sequential stochastic core of a cooperative stochastic programming game. Operations Research Letters, 41, 430–435.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr.Water Kern from University of Twente for improving the use of language. We also appreciate the suggestion and advice from the anonymous reviewers. This work is supported by National Natural Science Foundation of China (NSFC) through grant No.72001172,71871180,72071158, the Fundamental Research Funds for the Central Universities(No.310201911qd052) and Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JQ-225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panfei Sun.

Additional information

Communicated by Mihai Sirbu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Theorem 3.1

Proof

By calculating the Hessian matrix, it can be checked that the objective function of Problem \(\widetilde{\text {1}}\) is convex, and so is the feasible set. Hence, there exists at most one optimal solution of Problem \(\widetilde{\text {1}}\). It remains to verify the Lagrange conditions. The Lagrange function of Problem \(\widetilde{\text {1}}\) is

$$\begin{aligned} L(r,\lambda )=\sum \limits _{S\subseteq N}(r^{2}(S)\mathbf{Var }[{\mathcal {V}}(N)]-2r(S)cov({\mathcal {V}}(S),{\mathcal {V}}(N)))+\lambda (r(N)-1). \end{aligned}$$
(37)

Taking partial derivative of \(r_{i}\) in equation (37), then the Lagrangian conditions are

$$\begin{aligned} L_{i}(r,\lambda )=2\sum \limits _{S\ni i}(r(S)\mathbf{Var }[{\mathcal {V}}(N)]-cov({\mathcal {V}}(S),{\mathcal {V}}(N)))+\lambda =0, \forall i\in N. \end{aligned}$$
(38)

For any \(i,j\in N\), we then have

$$\begin{aligned} \sum \limits _{S\ni i}r(S)\mathbf{Var }[{\mathcal {V}}(N)]-\sum \limits _{S\ni i}cov({\mathcal {V}}(S),{\mathcal {V}}(N))= & {} \sum \limits _{S\ni j}r(S)\mathbf{Var }[{\mathcal {V}}(N)]\nonumber \\&-\sum \limits _{S\ni j}cov({\mathcal {V}}(S),{\mathcal {V}}(N)). \end{aligned}$$
(39)

Denote \(\sum \nolimits _{S\ni i}cov({\mathcal {V}}(S),{\mathcal {V}}(N))\) as \(a_{i}({\mathcal {V}})\). Furthermore,

$$\begin{aligned} \sum \nolimits _{S\ni i}r(S)\mathbf{Var }[{\mathcal {V}}(N)]= & {} 2^{n-1}r_{i}+2^{n-2}(r(N)-r_{i})\mathbf{Var }[{\mathcal {V}}(N)]\nonumber \\= & {} 2^{n-2}(r_{i}+1)\mathbf{Var }[{\mathcal {V}}(N)]. \end{aligned}$$
(40)

Together with equation (40), the optimal solution of equations (39) is

$$\begin{aligned} r^{*}_{i}=\frac{1}{n}+\frac{na_{i}({\mathcal {V}})-\sum \nolimits _{j\in N}a_{j}({\mathcal {V}})}{n2^{n-2}\mathbf{Var }[{\mathcal {V}}(N)]},\quad \forall i\in N. \end{aligned}$$
(41)

In conclusion, the optimal solution of Problem 1 is given by

$$\begin{aligned} x^{*}_{i}=d^{*}_{i}+\left( \frac{1}{n}+\frac{na_{i}({\mathcal {V}})-\sum \nolimits _{j\in N}a_{j}({\mathcal {V}})}{n2^{n-2}\mathbf{Var }[{\mathcal {V}}(N)]}\right) ({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)]), \forall i\in N, \end{aligned}$$
(42)

where \(d^{*}\) satisfies \(\sum \nolimits _{i\in N}d^{*}_{i}=\mathbf{E }[{\mathcal {V}}(N)]\). \(\square \)

Proof of Lemma 3.1

Proof

Denote the objective function of Problem 2 as \(P_{2}\), then we have

$$\begin{aligned} P_{2}= & {} \sum _{S\subseteq N}\mathbf{E }[(({\mathcal {V}}(S)-x(S))^{2}+{\bar{e}}({\mathcal {V}})^{2}-2({\mathcal {V}}(S)-x(S)){\bar{e}}({\mathcal {V}}))]\\= & {} \underbrace{\sum _{S\subseteq N}\mathbf{E }[(({\mathcal {V}}(S)-x(S))^{2}]}_{P_{21}}+\underbrace{\sum _{S\subseteq N}\mathbf{E }[{\bar{e}}({\mathcal {V}})^{2}]}_{P_{22}}-\underbrace{2\sum _{S\subseteq N}\mathbf{E }[({\mathcal {V}}(S)-x(S)){\bar{e}}({\mathcal {V}})]}_{P_{23}}\\= & {} P_{21}+P_{22}+P_{23}. \end{aligned}$$

Next we will make concretely analysis of the three parts respectively.

$$\begin{aligned} P_{21}= & {} \sum _{S\subseteq N}\mathbf{E }[(({\mathcal {V}}(S)-x(S))^{2}]\\= & {} \sum _{S\subseteq N}\mathbf{E }[({\mathcal {V}}(S)-d(S)-r(S){\mathcal {V}}(N)+r(S)\mathbf{E }[{\mathcal {V}}(N)])^{2}]\\= & {} \sum _{S\subseteq N}\mathbf{E }[({\mathcal {V}}(S)-d(S))^{2}+r^{2}(S)\mathbf{Var }[x(N)]\\&-2r(S)({\mathcal {V}}(S)-d(S))({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)])]\\= & {} \sum _{S\subseteq N}(\mathbf{E }[{\mathcal {V}}^{2}(S)]-2d(S)\mathbf{E }[{\mathcal {V}}(S)]+d^{2}(S)\\&+r^{2}(S)\mathbf{VarD} [{\mathcal {V}}(N)]-2r(S)cov({\mathcal {V}}(S),{\mathcal {V}}(N))). \end{aligned}$$

According to Proposition 3.1, the average excess \({\bar{e}}({\mathcal {V}})\) ia actually irrelevant to the allocation x, that is, it contains no unknown quantities d and r. Therefore eliminating the item \(P_{22}\) from \(P_{2}\) does not make any difference to the optimal solution of Problem 2. As to the last item \(P_{23}\), we have

$$\begin{aligned} P_{23}= & {} 2\sum _{S\subseteq N}\mathbf{E }[({\mathcal {V}}(S)-x(S)){\bar{e}}({\mathcal {V}})]\\= & {} 2\sum _{S\subseteq N}\mathbf{E }[({\mathcal {V}}(S)-x(S)])(\frac{1}{2^{n}-1}\sum _{T\subseteq N}{\mathcal {V}}(T)-\frac{2^{n-1}}{2^{n}-1}{\mathcal {V}}(N))]\\= & {} \frac{2}{2^{n}-1}\sum _{S\subseteq N}\mathbf{E }[\sum _{T\subseteq N}{\mathcal {V}}(T)({\mathcal {V}}(S)-x(S)])]\\&-\frac{2^{n}}{2^{n}-1}\sum _{S\subseteq N}\mathbf{E }[({\mathcal {V}}(S)-x(S)]){\mathcal {V}}(N)]\\= & {} \frac{2}{2^{n}-1}\underbrace{\sum _{S\subseteq N}\mathbf{E }[\sum _{T\subseteq N}{\mathcal {V}}(T)({\mathcal {V}}(S)-d(S)-r(S){\mathcal {V}}(N)+r(S)\mathbf{E }[{\mathcal {V}}(N)])]}_{P^{1}_{23}}\\&-\frac{2^{n}}{2^{n}-1}\underbrace{\sum _{S\subseteq N}\mathbf{E }[({\mathcal {V}}(S)-d(S)-r(S){\mathcal {V}}(N)+r(S)\mathbf{E }[{\mathcal {V}}(N)]){\mathcal {V}}(N)]}_{P^{2}_{23}}\\= & {} \frac{2}{2^{n}-1}P^{1}_{23}-\frac{2^{n}}{2^{n}-1}P^{2}_{23}. \end{aligned}$$

Further, the first item \(P^{1}_{23}\) can be rewrite as follows:

$$\begin{aligned} P^{1}_{23}= & {} \sum _{S\subseteq N}\mathbf{E }[\sum _{T\ne N}{\mathcal {V}}(T)({\mathcal {V}}(S)-d(S)-r(S){\mathcal {V}}(N)+r(S)\mathbf{E }[{\mathcal {V}}(N)])]\\&+\sum _{S\subseteq N}\mathbf{E }[{\mathcal {V}}(S){\mathcal {V}}(N)-d(S){\mathcal {V}}(N)-r(S){\mathcal {V}}^{2}(N)+r(S)\mathbf{E }[{\mathcal {V}}(N)]{\mathcal {V}}(N)]\\= & {} \sum _{S\subseteq N}\sum _{T\ne N}(\mathbf{E }[{\mathcal {V}}(T){\mathcal {V}}(S)]-d(S)\mathbf{E }[{\mathcal {V}}(T)]-r(S)cov({\mathcal {V}}(T),{\mathcal {V}}(N)))\\&+\sum _{S\subseteq N}(\mathbf{E }[{\mathcal {V}}(S){\mathcal {V}}(N)]-d(S)\mathbf{E }[{\mathcal {V}}(N)]-r(S)\mathbf{Var }[{\mathcal {V}}(N)]). \end{aligned}$$

Observe that the last item of the last equation is equivalent to \(P^{2}_{23}\), thus we have

$$\begin{aligned} P_{23}= & {} \frac{2}{2^{n}-1}\sum _{S\subseteq N}\sum _{T\ne N}(\mathbf{E }[{\mathcal {V}}(T){\mathcal {V}}(S)]-d(S)\mathbf{E }[{\mathcal {V}}(T)]-r(S)cov({\mathcal {V}}(T),{\mathcal {V}}(N)))\\&-\frac{2^{n}-2}{2^{n}-1}\sum _{S\subseteq N}(\mathbf{E }[{\mathcal {V}}(S){\mathcal {V}}(N)]-d(S)\mathbf{E }[{\mathcal {V}}(N)]-r(S)\mathbf{Var }[{\mathcal {V}}(N)])\\= & {} \frac{2}{2^{n}-1}\sum _{S\subseteq N}(\sum _{T\ne N}(\mathbf{E }[{\mathcal {V}}(T){\mathcal {V}}(S)]-d(S)\mathbf{E }[{\mathcal {V}}(T)]-r(S)cov({\mathcal {V}}(T),{\mathcal {V}}(N)))\\&+(1-2^{n-1})(\mathbf{E }[{\mathcal {V}}(S){\mathcal {V}}(N)]-d(S)\mathbf{E }[{\mathcal {V}}(N)])+(2^{n-1}-1)r(S)\mathbf{Var }[{\mathcal {V}}(N)])\\= & {} \frac{2}{2^{n}-1}\sum _{S\subseteq N}(\sum _{T\subseteq N}(\mathbf{E }[{\mathcal {V}}(T){\mathcal {V}}(S)]-d(S)\mathbf{E }[{\mathcal {V}}(T)]-r(S)cov({\mathcal {V}}(T),{\mathcal {V}}(N)))\\&-2^{n-1}(\mathbf{E }[{\mathcal {V}}(S){\mathcal {V}}(N)]-d(S)\mathbf{E }[{\mathcal {V}}(N)]-r(S)\mathbf{Var }[{\mathcal {V}}(N)]). \end{aligned}$$

Note that the optimal solution of Problem 2 will not change by eliminating the constant items and corresponding positive coefficients in the objective function \(P_{2}\). Denote the simplified objective function as \(\widetilde{P_{2}}\), i.e.,

$$\begin{aligned} \widetilde{P_{2}}= & {} \sum _{S\subseteq N}(\mathbf{Var }[{\mathcal {V}}(N)]r^{2}(S)+d^{2}(S) +\left( \frac{2}{2^{n}-1}\sum _{T\subseteq N}\mathbf{E }[{\mathcal {V}}(T)]-2\mathbf{E }[{\mathcal {V}}(S)]\right. \\&\left. -\frac{2^{n}}{2^{n}-1}\mathbf{E }[{\mathcal {V}}(N)]\right) d(S)\\&+\left( \frac{2}{2^{n}-1}\sum _{T\subseteq N}cov({\mathcal {V}}(T),{\mathcal {V}}(N))-2cov({\mathcal {V}}(S),{\mathcal {V}}(N))-\frac{2^{n}}{2^{n}-1}\mathbf{Var }[{\mathcal {V}}(N)]\right) r(S)). \end{aligned}$$

In conclusion, Problem 2 is equivalent to the following modified problem:

Problem \(\widetilde{\text {2}}\): Minimize \(\widetilde{P_{2}}\) s.t. \(x\in DR({\mathcal {V}})\). \(\square \)

Proof of Theorem 3.2

Proof

Similar to the proof of Theorem 3.1, one could verify that there exists at most one optimal solution of Problem \({\widetilde{2}}\). Imposing the Lagrangian multiplication factors \(\lambda ,\omega \), we obtain the Lagrangian function of this problem

$$\begin{aligned} L(x,\lambda ,\omega )=\widetilde{P_{2}}+\lambda (d(N)-\mathbf{E }[{\mathcal {V}}(N)])+\omega (r(N)-1). \end{aligned}$$
(43)

Taking partial derivative of \(d_{i}\) in equation (43), the Lagrangian conditions are

$$\begin{aligned} L_{d_{i}}(x,\lambda ,\omega )= & {} \sum _{S\ni i}\left( 2d(S)-2\mathbf{E }[{\mathcal {V}}(S))+\frac{2}{2^{n}-1}\sum _{T\subseteq N}\mathbf{E }[{\mathcal {V}}(T)]\right. \\&\left. -\frac{2^{n}}{2^{n}-1}\mathbf{E }[{\mathcal {V}}(N)]\right) +\lambda =0,\quad \forall i\in N. \end{aligned}$$

Let \(e_{i}({\mathcal {V}})\) denote \(\sum \nolimits _{S\ni i}\mathbf{E }[{\mathcal {V}}(S)]\). The Lagrangian conditions immediately give the following equations:

$$\begin{aligned} \sum _{S\ni i}d(S)-e_{i}({\mathcal {V}})=\sum _{S\ni j}d(S)-e_{j}({\mathcal {V}}), \quad \forall i,j\in N. \end{aligned}$$
(44)

Together with the constraint condition \(d(N)=\mathbf{E }[{\mathcal {V}}(N)]\), we can obtain the solution \(d_{i}^{*}\) of equations (44).

$$\begin{aligned} d_{i}^{*}=\frac{1}{n}\mathbf{E }[{\mathcal {V}}(N)]+\frac{1}{n2^{n-2}}[ne_{i}({\mathcal {V}})-\sum _{j\in N}e_{j}({\mathcal {V}})],\quad \forall i\in N. \end{aligned}$$
(45)

Taking the partial derivative of \(r_{i}\) in equation (43), then the Lagrangian conditions of r are

$$\begin{aligned} L_{r_{i}}(x,\lambda ,\omega )= & {} \sum _{S\ni i}(2\mathbf{Var }[{\mathcal {V}}(N)]r(S)-\frac{2}{2^{n}-1}\sum _{T\subseteq N}cov({\mathcal {V}}(T),{\mathcal {V}}(N))\\&-2cov({\mathcal {V}}(S),{\mathcal {V}}(N))-\frac{2^{n}}{2^{n}-1}\mathbf{Var }[{\mathcal {V}}(N)])+\omega =0, \end{aligned}$$

which is equivalent to the following conditions: For all \(i,j\in N\), it holds that

$$\begin{aligned}&\sum _{S\ni i}r(S)\mathbf{Var }[{\mathcal {V}}(N)]-\sum \limits _{S\ni i}cov({\mathcal {V}}(S),{\mathcal {V}}(N))\nonumber \\&\quad =\sum _{S\ni j}r(S)\mathbf{Var }[{\mathcal {V}}(N)]-\sum \limits _{S\ni j}cov({\mathcal {V}}(S),{\mathcal {V}}(N)). \end{aligned}$$
(46)

Similar to the analysis of equation (39), the optimal solution of equations (46) is

$$\begin{aligned} r^{*}_{i}=\frac{1}{n}+\frac{na_{i}({\mathcal {V}})-\sum \limits _{j\in N}a_{j}({\mathcal {V}})}{n2^{n-2}\mathbf{Var }[{\mathcal {V}}(N)]},\quad \forall i\in N. \end{aligned}$$
(47)

\(\square \)

Proof of Theorem 4.1

Proof

Denote the objective function of Problem 3 as \(P_{3}\), then we have

$$\begin{aligned} P_{3}= & {} \sum _{i\in N}\sum _{S\ni i}\mathbf{E }[({\mathcal {V}}(S)-\mathbf{E }[{\mathcal {V}}(S)]-{\mathcal {V}}(S\backslash i)+\mathbf{E }[{\mathcal {V}}(S\backslash i)]-(x_{i}-\mathbf{E }[x_{i}]))^{2}]\\= & {} \sum _{i\in N}\sum _{S\ni i}\mathbf{E }[({\mathcal {V}}(S)-\mathbf{E }[{\mathcal {V}}(S)]-{\mathcal {V}}(S\backslash i)+\mathbf{E }[{\mathcal {V}}(S\backslash i)])^{2}+(x_{i}-\mathbf{E }[x_{i}])^{2}\\&-2\sum _{i\in N}\sum _{S\ni i}({\mathcal {V}}(S)-\mathbf{E }[{\mathcal {V}}(S)]-{\mathcal {V}}(S\backslash i)+\mathbf{E }[{\mathcal {V}}(S\backslash i)])(x_{i}-\mathbf{E }[x_{i}])]\\= & {} \sum _{i\in N}\sum _{S\ni i}(\mathbf{Var }[{\mathcal {V}}(S)]+\mathbf{Var }[{\mathcal {V}}(S\backslash i)])-2\sum _{i\in N}\sum _{S\ni i}cov({\mathcal {V}}(S),{\mathcal {V}}(S\backslash i))\\&+\sum _{i\in N}\sum _{S\ni i}r_{i}^{2}\mathbf{Var }[{\mathcal {V}}(N)]-2\sum _{i\in N}\sum _{S\ni i}r_{i}[cov({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i),{\mathcal {V}}(N))]. \end{aligned}$$

Notice that the first two summations are constants for any given \((N,{\mathcal {V}})\in SG(N)\), hence the optimal solution of Problem 3 is equivalent to that of the following problem:

Problem \(\widetilde{\text {3}}\): Minimize \(\sum \nolimits _{i\in N}\sum \nolimits _{S\ni i}r_{i}^{2}\mathbf{Var }[{\mathcal {V}}(N)]-2\sum \nolimits _{i\in N}\sum \nolimits _{S\ni i}r_{i}[cov({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i),{\mathcal {V}}(N))]\) s.t. \(\sum \nolimits _{i\in N}r_{i}=1\).

We could verify that the objective function of Problem \({\tilde{3}}\) is convex and so is the feasible set, hence there exists at most one optimal point. Imposing the Lagrangian multiplication factors \(\lambda \), then the Lagrangian function of Problem \({\tilde{3}}\) is

$$\begin{aligned} L(x,\lambda ,\omega )= & {} \sum \limits _{i\in N}\sum \limits _{S\ni i}r_{i}^{2}\mathbf{Var }[{\mathcal {V}}(N)]-2\sum \limits _{i\in N}\sum \limits _{S\ni i}r_{i}[cov({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i),{\mathcal {V}}(N))]\nonumber \\&+\lambda (r(N)-1). \end{aligned}$$
(48)

Taking partial derivative of \(r_{i}\), the Lagrangian conditions are

$$\begin{aligned} L_{r_{i}}(x,\lambda ,\omega )= & {} \sum _{S\ni i}2r_{i}\mathbf{Var }[{\mathcal {V}}(N)]\nonumber \\&-\sum _{S\ni i}2[cov({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i),{\mathcal {V}}(N))]+\lambda =0, \forall i\in N. \end{aligned}$$
(49)

Denote \(\sum \nolimits _{S\ni i}cov({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i),{\mathcal {V}}(N))\) as \(b_{i}({\mathcal {V}})\), then the above equations imply the following relations among players:

$$\begin{aligned} \sum _{S\ni i}r_{i}\mathbf{Var }[{\mathcal {V}}(N)]-b_{i}({\mathcal {V}})=\sum _{S\ni j}r_{j}\mathbf{Var }[{\mathcal {V}}(N)]-b_{j}({\mathcal {V}}), \forall i,j\in N. \end{aligned}$$
(50)

The solution of equations (50) is \(r^{*}_{i}=\frac{1}{n}+\frac{nb_{i}({\mathcal {V}})-\sum \nolimits _{j\in N}b_{j}({\mathcal {V}})}{n2^{n-2}\mathbf{Var }[{\mathcal {V}}(N)]},\forall i\in N\), which complete the proof. \(\square \)

Proof of Lemma 4.1

Proof

Denote the objective function of Problem 4 as \(P_{4}\), then we have

$$\begin{aligned} P_{4}= & {} \sum \limits _{i\in N}\sum \limits _{S\ni i}\mathbf{E }[(m_{i}(S,x)-{\overline{m}}({\mathcal {V}}))^{2}]\\= & {} \sum _{i\in N}\sum _{S\ni i}\mathbf{E }[m^{2}_{i}(S,x)+{\overline{m}}^{2}({\mathcal {V}})-2m_{i}(S,x){\overline{m}}({\mathcal {V}})]\\= & {} \sum _{i\in N}\sum _{S\ni i}\mathbf{E }[m^{2}_{i}(S,x)]+\underbrace{\sum _{i\in N}\sum _{S\ni i}\mathbf{E }[{\overline{m}}^{2}({\mathcal {V}})]}_{P_{4}^{1}}-\underbrace{2\sum _{i\in N}\sum _{S\ni i}\mathbf{E }[m_{i}(S,x){\overline{m}}({\mathcal {V}})]}_{P_{4}^{2}} \end{aligned}$$

Based on Proposition 4.1, \({\overline{m}}({\mathcal {V}})\) merely depends on the given game \({\mathcal {V}}\). So elimination of \(P_{4}^{1}\) has no effect no the optimal solution of Problem 4. Now we focus on the item \(P_{4}^{2}\), which can be rewritten as:

$$\begin{aligned} P_{4}^{2}= & {} 2\sum _{i\in N}\sum _{S\ni i}\mathbf{E }[({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i)-x_{i}){\overline{m}}({\mathcal {V}})]\\= & {} 2\sum _{i\in N}\sum _{S\ni i}\mathbf{E }[({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i)){\overline{m}}({\mathcal {V}})]\\&-2\sum _{i\in N}\sum _{S\ni i}d_{i}\mathbf{E }[{\overline{m}}({\mathcal {V}})]-2\sum _{i\in N}\sum _{S\ni i}r_{i}\mathbf{E }[({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)]){\overline{m}}({\mathcal {V}})]\\= & {} 2\sum _{i\in N}\sum _{S\ni i}\mathbf{E }[({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i)){\overline{m}}({\mathcal {V}})]-2^{n}\mathbf{E }[{\mathcal {V}}(N)]\mathbf{E }[{\overline{m}}({\mathcal {V}})]\\&-2^{n}\mathbf{E }[({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)]){\overline{m}}({\mathcal {V}})] \end{aligned}$$

The last two equations are derived from the fact that \(d(N)=\mathbf{E }[\{{\mathcal {V}}(N)]\) and \(r(N)=1\). Once the game is given, \(P_{4}^{2}\) is uniquely determined. therefore eliminating the constant items \(P_{4}^{1}\) and \(P_{4}^{2}\) from \(P_{4}\) exerts no influence on the optimal solution with respect to Problem 4, which completes the proof. \(\square \)

Proof of Theorem 4.2

Proof of Theorem 4.2

Denote the objective function of Problem 5 as \(P_{5}\), then we have

$$\begin{aligned} P_{5}= & {} \sum _{i\in N}\sum _{S\ni i}\mathbf{E }[({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i)-d_{i}-r_{i}({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)])^{2}]\\= & {} \sum _{i\in N}\sum _{S\ni i}\mathbf{E }[({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i)-d_{i})^{2}+r_{i}^{2}(({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)])^{2}\\&-2r_{i}({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i)-d_{i})({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)])]\\= & {} \sum _{i\in N}\sum _{S\ni i}(\mathbf{E }[({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i))^{2}]+d_{i}^{2}\\&-2d_{i}\mathbf{E }[{\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i)]+r_{i}^{2}\mathbf{Var }[{\mathcal {V}}(N)]\\&-2r_{i}cov({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i),{\mathcal {V}}(N)]))\\= & {} \sum _{i\in N}\sum _{S\ni i}(\mathbf{E }[({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i))^{2}]+d_{i}^{2}+r_{i}^{2}\mathbf{Var }[{\mathcal {V}}(N)])\\&-2\sum _{i\in N}d_{i}c_{i}({\mathcal {V}})-2\sum _{i\in N}r_{i}b_{i}({\mathcal {V}}) \end{aligned}$$

where \(b_{i}({\mathcal {V}})=\sum \nolimits _{S\ni i}cov({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i),{\mathcal {V}}(N))\) and \(c_{i}({\mathcal {V}})=\sum \nolimits _{S\ni i}\mathbf{E }[{\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i)]\). Due to the convexity of objective function \(P_{5}\) and the feasible set, there exists at most one optimal point. Imposing the Lagrangian multiplication factors \(\lambda ,\omega \), the Lagrangian function of Problem 5 is

$$\begin{aligned} L(x,\lambda ,\omega )=P_{5}+\lambda (d(N)-\mathbf{E }[{\mathcal {V}}(N)])+\omega (r(N)-1). \end{aligned}$$
(51)

Taking partial derivative of \(d_{i}\) and \(r_{i}\) in equation (51), the Lagrangian conditions are

$$\begin{aligned}&L_{d_{i}}(x,\lambda ,\omega )=2\sum _{S\ni i}\ d_{i}-2c_{i}({\mathcal {V}})+\lambda =0, \forall i\in N. \end{aligned}$$
(52)
$$\begin{aligned}&L_{r_{i}}(x,\lambda ,\omega )=2\sum _{S\ni i}r_{i}\mathbf{Var }[{\mathcal {V}}(N)]-2b_{i}({\mathcal {V}})+\omega =0, \forall i\in N. \end{aligned}$$
(53)

Equations in (52) and (53) imply the following relations among players,

$$\begin{aligned}&\sum _{S\ni i}\ d_{i}-c_{i}({\mathcal {V}})=\sum _{S\ni j}\ d_{j}-c_{j}({\mathcal {V}}), \forall i,j\in N. \end{aligned}$$
(54)
$$\begin{aligned}&\sum _{S\ni i}r_{i}\mathbf{Var }[{\mathcal {V}}(N)]-b_{i}({\mathcal {V}})=\sum _{S\ni j}r_{j}\mathbf{Var }[{\mathcal {V}}(N)]-b_{j}({\mathcal {V}}), \forall i,j\in N. \end{aligned}$$
(55)

The optimal solution of equations (54) and (55) are

$$\begin{aligned} r^{*}_{i}=\frac{1}{n}+\frac{nb_{i}({\mathcal {V}})-\sum \limits _{j\in N}b_{j}({\mathcal {V}})}{n2^{n-2}\mathbf{Var }[{\mathcal {V}}(N)]}, \quad d^{*}_{i}=\frac{1}{n}\mathbf{E }[{\mathcal {V}}(N)]+\frac{nc_{i}({\mathcal {V}})-\sum \limits _{j\in N}c_{j}({\mathcal {V}})}{n2^{n-2}}, \forall i\in N. \end{aligned}$$

\(\square \)

Extension of the models

For any weight function m, let us consider the following problems, which are extensions of optimization models in Section 3 and 4.


Problem 6: Minimize \(\sum \nolimits _{S\subseteq N}m(s)\mathbf{Var }[e(S,x)]\) s.t. \(x\in DR({\mathcal {V}})\).


Problem 7: Minimize \(\sum \nolimits _{S\subseteq N}m(s)\mathbf{E }[(e(S,x)-{\bar{e}}({\mathcal {V}},x))^{2}]\) s.t. \(x\in DR({\mathcal {V}})\).


Problem 8: Minimize \(\sum \nolimits _{i\in N}\sum \nolimits _{S\ni i}m(s)\mathbf{E }[(m_{i}(S,x)-\mathbf{E }[m_{i}(S,x)])^{2}]\) s.t. \(x\in DR({\mathcal {V}})\).


Problem 9: Minimize \(\sum \nolimits _{i\in N}\sum \nolimits _{S\ni i}m(s)\mathbf{E }[(m_{i}(S,x)-{\overline{m}}({\mathcal {V}},x))^{2}]\) s.t. \(x\in DR({\mathcal {V}})\).

The method to obtain the optimal solutions of the above Problems is the same as that of Theorem 3.1, 3.2, 4.1 and 4.2. Here we omit the detailed and lengthy proofs of the following results.

Proposition G.1

For any \((N,{\mathcal {V}})\in SG(N)\) and weight function \(m:{\mathcal {P}}(N)\backslash \emptyset \rightarrow {\mathbb {R}}\), the optimal solution of Problem 6 is

$$\begin{aligned} x^{*}_{i}=d^{*}_{i}+\left( \frac{1}{n}+\frac{na^{m}_{i}({\mathcal {V}})-\sum \limits _{j\in N}a^{m}_{j}({\mathcal {V}})}{n\alpha \mathbf{Var }[{\mathcal {V}}(N)]}\right) ({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)]), \end{aligned}$$

where \(a^{m}_{i}({\mathcal {V}})=\sum \nolimits _{S\ni i}m(s)cov({\mathcal {V}}(S),{\mathcal {V}}(N))\), \(\alpha =\sum \nolimits _{s=1}^{n-1}C_{n-2}^{s-1}m(s)\) and \(d^{*}\) satisfies \(\sum \nolimits _{i\in N}d^{*}_{i}=\mathbf{E }[{\mathcal {V}}(N)]\).

Proposition G.2

For any \((N,{\mathcal {V}})\in SG(N)\) and weight function \(m:{\mathcal {P}}(N)\backslash \emptyset \rightarrow {\mathbb {R}}\), there exists a unique optimal solution \(x^{*}\) of Problem 7, which is

$$\begin{aligned} x^{*}_{i}=d^{*}_{i}+r^{*}_{i}({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)]), \end{aligned}$$

where

$$\begin{aligned}&r^{*}_{i}=\frac{1}{n}+\frac{na^{m}_{i}({\mathcal {V}})-\sum \limits _{j\in N}a^{m}_{j}({\mathcal {V}})}{n\alpha \mathbf{Var }[{\mathcal {V}}(N)]},\forall i\in N, \\&d_{i}^{*}=\frac{1}{n}\mathbf{E }[{\mathcal {V}}(N)]+\frac{ne^{m}_{i}({\mathcal {V}})-\sum _{j\in N}e^{m}_{j}({\mathcal {V}})}{n\alpha },\forall i\in N, \end{aligned}$$

\(a^{m}_{i}({\mathcal {V}})=\sum \nolimits _{S\ni i}m(s)cov({\mathcal {V}}(S),{\mathcal {V}}(N))\), \(\alpha =\sum \nolimits _{s=1}^{n-1}C_{n-2}^{s-1}m(s)\) and \(e^{m}_{i}({\mathcal {V}})=\sum \nolimits _{S\ni i}m(s)\mathbf{E }[{\mathcal {V}}(S)]\).

Proposition G.3

For any \((N,{\mathcal {V}})\in SG(N)\) and weight function \(m:{\mathcal {P}}(N)\backslash \emptyset \rightarrow {\mathbb {R}}\), the optimal solution of Problem 8 is

$$\begin{aligned} x^{*}_{i}=d^{*}_{i}+\left( \frac{1}{n}+\frac{nb^{m}_{i}({\mathcal {V}})-\sum \limits _{j\in N}b^{m}_{j}({\mathcal {V}})}{n\alpha \mathbf{Var }[{\mathcal {V}}(N)]}\right) ({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)]), \end{aligned}$$

where \(b^{m}_{i}({\mathcal {V}})=\sum \nolimits _{S\ni i}m(s)cov({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i),{\mathcal {V}}(N))\), \(\alpha =\sum \nolimits _{s=1}^{n-1}C_{n-2}^{s-1}m(s)\) and \(d^{*}\) satisfies \(\sum \nolimits _{i\in N}d^{*}_{i}=\mathbf{E }[{\mathcal {V}}(N)]\).

Proposition G.4

For any \((N,{\mathcal {V}})\in SG(N)\) and weight function \(m:{\mathcal {P}}(N)\backslash \emptyset \rightarrow {\mathbb {R}}\), there exists a unique optimal solution \(x^{*}\) of Problem 9, which is

$$\begin{aligned} x^{*}_{i}=d^{*}_{i}+r^{*}_{i}({\mathcal {V}}(N)-\mathbf{E }[{\mathcal {V}}(N)]), \end{aligned}$$

where

$$\begin{aligned} r^{*}_{i}&=\frac{1}{n}+\frac{nb^{m}_{i}({\mathcal {V}})-\sum \limits _{j\in N}b^{m}_{j}({\mathcal {V}})}{n\alpha \mathbf{Var }[{\mathcal {V}}(N)]},\forall i\in N,\\ d_{i}^{*}&=\frac{1}{n}\mathbf{E }[{\mathcal {V}}(N)]+\frac{nc^{m}_{i}({\mathcal {V}})-\sum \limits _{j\in N}c^{m}_{j}({\mathcal {V}})}{n2^{n-2}},\forall i\in N, \end{aligned}$$

\(b^{m}_{i}({\mathcal {V}})=\sum \nolimits _{S\ni i}m(s)cov({\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i),{\mathcal {V}}(N))\), \(\alpha =\sum \nolimits _{s=1}^{n-1}C_{n-2}^{s-1}m(s)\) and \(c^{m}_{i}({\mathcal {V}})=\sum \nolimits _{S\ni i}m(s)\mathbf{E }[{\mathcal {V}}(S)-{\mathcal {V}}(S\backslash i)]\).

Once the weight function is taken into account, the optimal solutions are highly unified with the original solutions in form. Models in Section 3 and 4 can be seen as the special cases when all the coalitions have the same weight. In this way, we extend the most coalitional (marginal) stable and the fairest coalitional (marginal) solutions and obtain a family of solution concepts for stochastic cooperative games.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Hou, D. & Sun, H. Optimization implementation of solution concepts for cooperative games with stochastic payoffs. Theory Decis 93, 691–724 (2022). https://doi.org/10.1007/s11238-022-09865-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-022-09865-0

Keywords

Navigation