Skip to main content
Log in

On the characterization of weighted simple games

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

This paper has a twofold scope. The first one is to clarify and put in evidence the isomorphic character of two theories developed in quite different fields: on one side, threshold logic, on the other side, simple games. One of the main purposes in both theories is to determine when a simple game is representable as a weighted game, which allows a very compact and easily comprehensible representation. Deep results were found in threshold logic in the sixties and seventies for this problem. However, game theory has taken the lead and some new results have been obtained for the problem in the past two decades. The second and main goal of this paper is to provide some new results on this problem and propose several open questions and conjectures for future research. The results we obtain depend on two significant parameters of the game: the number of types of equivalent players and the number of types of shift-minimal winning coalitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The minimal winning coalitions are given by \(\{A,C\}\), \(\{A,D\}\), \(\{B,C\}\), and \(\{B,D\}\), see Sect. 2 for the definitions.

  2. Using the notation from Sect. 3, \(\langle \{A,C\},\{B,D\}\,| \,\{A,B\},\{C,D\}\rangle \) is a trading transform, which certifies non-weightedness.

  3. There is no connection to the efficient computation of power indices. In general, generating functions are just a theoretical tool from enumerative combinatorics in order to compute exact formulas for recurrence relations.

References

  • Anthony, M., & Holden, S. (1994). Quantifying generalization in linearly weighted neural networks. Complex Systems, 8, 91–114.

    Google Scholar 

  • Bean, D., Friedman, J., & Parker, C. (2008). Simple majority achievable hierarchies. Theory and Decision, 65, 285–302.

    Article  Google Scholar 

  • Beimel, A., Tassa, T., & Weinreb, E. (2008). Characterizing ideal weighted threshold secret sharing. SIAM Journal on Discrete Mathematics, 22, 360–397.

    Article  Google Scholar 

  • Beimel, A., & Weinreb, E. (2006). Monotone circuits for monotone weighted threshold families. Information Processing Letters, 97, 12–18.

    Article  Google Scholar 

  • Bohossian, V., & Bruck, J. (2003). Algebraic techniques for constructing minimal weights threshold functions. SIAM Journal on Discrete Mathematics, 16, 114–126.

    Article  Google Scholar 

  • Carreras, F., & Freixas, J. (1996). Complete simple games. Mathematical Social Sciences, 32, 139–155.

    Article  Google Scholar 

  • Chvátal, V. (1983). Linear Programming. New York: W.H. Freeman.

    Google Scholar 

  • Chow, C. (1961). Boolean functions realizable with single threshold devices. In Proceedings of the Institute of Radio Engineers, Vol. 49 (pp. 370–371).

  • Dedekind, R. (1897). Über Zerlegungen von Zahlen durch ihre größten gemeinsammen Teiler. Gesammelte Werke, 1, 103–148.

    Google Scholar 

  • de Keijzer, B., Klos, T., & Zhang, Y. (2014). Finding optimal solutions for voting game design problems. Journal of Artificial Intelligence, 50, 105–140.

    Google Scholar 

  • Dubey, P., & Shapley, L. (1979). Mathematical properties of the Banzhaf power index. Mathematics of Operations Research, 4, 99–131.

    Article  Google Scholar 

  • Einy, E., & Lehrer, E. (1989). Regular simple games. International Journal of Game Theory, 18, 195–207.

    Article  Google Scholar 

  • Elgot, C. (1961). Truth functions realizable by single threshold organs. In AIEE Conference Paper 60-1311 (October), revised November 1960; paper presented at IEEE Symposium on Switching Circuit Theory and Logical Design.

  • Freixas, J., & Kurz, S. (2013). The golden number and Fibonacci sequences in the design of voting systems. European Journal of Operational Research, 226, 246–257.

    Article  Google Scholar 

  • Freixas, J., & Kurz, S. (2014). Enumerations of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum. Annals of Operations Research, 222, 317–339.

    Article  Google Scholar 

  • Freixas, J., & Kurz, S. (2014). On minimum integer representations of weighted games. Mathematical Social Sciences, 67, 9–22.

    Article  Google Scholar 

  • Freixas, J., & Molinero, X. (2009). Simple games and weighted games: A theoretical and computational viewpoint. Discrete Applied Mathematics, 157, 1496–1508.

    Article  Google Scholar 

  • Freixas, J., & Molinero, X. (2010). Weighted games without a unique minimal representation in integers. Optimization Methods and Software, 25, 203–215.

    Article  Google Scholar 

  • Freixas, J., Molinero, X., & Roura, S. (2012). Complete voting systems with two types of voters: Weightedness and counting. Annals of Operations Research, 193, 273–289.

    Article  Google Scholar 

  • Freixas, J., & Pons, M. (2010). Hierarchies achievable in simple games. Theory and Decision, 68, 393–404.

    Article  Google Scholar 

  • Freixas, J., & Puente, M. A. (1998). Complete games with minimum. Annals of Operations Research, 84, 97–109.

    Article  Google Scholar 

  • Freixas, J., & Puente, M. A. (2008). Dimension of complete simple games with minimum. European Journal of Operational Research, 188, 555–568.

    Article  Google Scholar 

  • Freixas, J., & Zwicker, W. (2003). Weighted voting, abstention, and multiple levels of approval. Social Choice and Welfare, 21, 399–431.

    Article  Google Scholar 

  • Friedman, J., McGrath, L., & Parker, C. (2006). Achievable hierarchies in voting games. Theory and Decision, 61, 305–318.

    Article  Google Scholar 

  • Gabelman, I. (1961). The functional behavior of majority (threshold) elements, Ph.D. dissertation, Electrical Engineering Department, Syracuse University.

  • Golomb, S. (1959). On the classification of Boolean functions. IRE Transactions on Circuit Theory, 6, 176–186.

    Article  Google Scholar 

  • Gvozdeva, T., & Slinko, A. (2011). Weighted and roughly weighted simple games. Mathematical Social Sciences, 61, 20–30.

    Article  Google Scholar 

  • Hammer, P., & Holzman, R. (1992). Approximations of pseudoboolean functions; applications to game theory. ZOR Methods and Models of Operations Research, 36, 3–21.

    Article  Google Scholar 

  • Hammer, P., Ibaraki, T., & Peled, U. (1981). Threshold numbers and threshold completions. Annals of Discrete Mathematics, 11, 125–145.

    Google Scholar 

  • Hammer, P., Kogan, A., & Rothblum, U. (2000). Evaluation, strength and relevance of Boolean functions. SIAM Journal on Discrete Mathematics, 13, 302–312.

    Article  Google Scholar 

  • Herranz, J. (2011). Any 2-asummable bipartite function is weighted threshold. Discrete Applied Mathematics, 159, 1079–1084.

    Article  Google Scholar 

  • Houy, N., & Zwicker, W. (2014). The geometry of voting power: Weighted voting and hyper-ellipsoids. Games and Economic Behavior, 84, 7–16.

    Article  Google Scholar 

  • Hu, S. (1965). Threshold Logic. Berkeley: University of California Press.

    Google Scholar 

  • Isbell, J. (1956). A class of majority games. Quarterly Journal of Mathematics Oxford Series, 7, 183–187.

    Article  Google Scholar 

  • Isbell, J. (1958). A class of simple games. Duke Mathematics Journal, 25, 423–439.

    Article  Google Scholar 

  • Kartak, V. M., Kurz, S., Ripatti, A. V., & Scheithauer, G. (2015). Minimal proper non-IRUP instances of the one-dimensional cutting stock problem. Discrete Applied Mathematics, 187, 120–129.

    Article  Google Scholar 

  • Kilgour, D. (1983). A formal analysis of the amending formula of Canada’s Constitution Act. Canadian Journal of Political Science, 16, 771–777.

    Article  Google Scholar 

  • Kurz, S. (2012). On minimum sum representations for weighted voting games. Annals of Operations Research, 196, 361–369.

    Article  Google Scholar 

  • Kurz, S., Molinero, X., & Olsen, M. (2016). On the construction of high-dimensional simple games. In Proceedings of the 22nd European Conference on Artificial Intelligence (pp. 1–13).

  • Kurz, S., & Napel, S. (2016). Dimension of the Lisbon voting rules in the EU Council: A challenge and new world record. Optimization Letters, 10, 1245–1256.

    Article  Google Scholar 

  • Kurz, S., & Tautenhahn, N. (2013). On Dedekind’s problem for complete simple games. International Journal of Game Theory, 42, 411–437.

    Article  Google Scholar 

  • Littlestone, N. (1988). Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2, 285–318.

    Google Scholar 

  • May, K. (1952). A set of independent, necessary and sufficient conditions for simple majority decision. Econometrica, 20, 680–684.

    Article  Google Scholar 

  • Muroga, S. (1971). Threshold Logic and Its Applications. New York: Wiley-Interscience.

    Google Scholar 

  • Muroga, S., Toda, I., & Kondo, M. (1962). Majority decision functions of up to six variables. Mathematics Computation, 16, 459–472.

    Article  Google Scholar 

  • Muroga, S., Toda, I., & Takasu, S. (1961). Theory of majority decision elements. Journal Franklin Institute, 271, 376–418.

    Article  Google Scholar 

  • Muroga, S., Tsuboi, T., & Baugh, R. (1970). Enumeration of threshold functions of eight variables. IEEE Transactions on Computers C-19(9), 818–825.

  • Neumann, J. V., & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton: Princeton University Press.

    Google Scholar 

  • Parberry, I. (1994). Circuit Complexity and Neural Networks. Cambridge: The M.I.T. Press.

    Google Scholar 

  • Peled, U., & Simeone, B. (1985). Polynomial-time algorithms for regular set-covering and threshold synthesis. Discrete Applied Mathematics, 12, 57–69.

    Article  Google Scholar 

  • Peleg, B. (1968). On weight of constant sum majority games. SIAM Journal of Applied Mathematics, 16, 527–532.

    Article  Google Scholar 

  • Picton, P. (2000). Neural Networks (2nd ed.). Great Britain: The Macmillan Press, Ltd.

    Google Scholar 

  • Ramamurthy, K. (1990). Coherent Structures and Simple Games. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Reiterman, J., Rödl, V., Sinajova, E., & Tuma, M. (1985). Threshold hypergraphs. Discrete Applied Mathematics, 54, 193–200.

    Article  Google Scholar 

  • Roychowdhury, V., Siu, K., & Orlitsky, A. (Eds.). (1994). Theoretical Advances in Neural Computation and Learning. Stanford, USA: Kluwer Academic Publishers.

    Google Scholar 

  • Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal on Applied Mathematics, 17, 1163–1170.

    Article  Google Scholar 

  • Simmons, G. (1990). How to (really) share a secret. In Proceedings of the 8th Annual International Cryptology Conference on Advances in Cryptology. Springer, London (pp. 390–448).

  • Siu, K., Roychowdhury, V., & Kailath, T. (1995). Discrete Neural Computation: A Theoretical Foundation. New Jersey: Prentice Hall.

    Google Scholar 

  • Tassa, T. (2007). Hierarchical threshold secret sharing. Journal of Cryptology, 20, 237–264.

    Article  Google Scholar 

  • Taylor, A. D., & Pacelli, A. (2008). Mathematics and Politics (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Taylor, A. D., & Zwicker, W. S. (1992). A characterization of weighted voting. Proceedings of the American Mathematical Society, 115, 1089–1094.

    Article  Google Scholar 

  • Taylor, A. D., & Zwicker, W. S. (1995). Simple games and magic squares. Journal of Combinatorial Theory Series A, 71, 67–88.

    Article  Google Scholar 

  • Taylor, A. D., & Zwicker, W. S. (1999). Simple Games: Desirability Relations, Trading, and Pseudoweightings. New Jersey: Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by funds from the Spanish Ministry of Economy and Competitiveness (MINECO) and from the European Union (FEDER Funds) under Grant MTM2015-66818-P (MINECO/FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Freixas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freixas, J., Freixas, M. & Kurz, S. On the characterization of weighted simple games. Theory Decis 83, 469–498 (2017). https://doi.org/10.1007/s11238-017-9606-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-017-9606-z

Keywords

Navigation