Skip to main content
Log in

Politicians, governed versus non-governed interest groups and rent dissipation

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

Government intervention often gives rise to contests and the government can influence their outcome by choosing their type. We consider a contest with two interest groups: one that is governed by a central planner and one that is not. Rent dissipation is compared under two well-known contest success functions: the generalized logit and the all-pay auction. We also consider the case in which the government can limit the size of the non-governed interest group in order to determine the scope of rent dissipation, with the goal of either increasing the rent obtained by the government or reducing the wasted resources invested in the contest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A major focus of the contest literature has been the issue of how changing the parameters of the contest (number of the players, valuations and abilities of the contestants, and the nature of the information they possess) will alter the equilibrium efforts and the extent of relative prize dissipation (Hillman and Riley 1989; Hurley and Shogren 1998; Konrad 2002; Nitzan 1994; Nti 1997). In addition, attention is paid to the effect of the changes made in these parameters on the contestants’ expected payoffs (Gradstein 1995; Nti 1997). Moreover, a major effort has been made to clarify the different levels of rent under-dissipation in contests (Gradstein and Konrad 1999; Kahana and Nitzan 1999; Konrad 2004; Konrad and Schlesinger 1997; Nitzan 1994; Nti 1997).

  2. See Munster (2009) for a generalization of the axiomatic approach to group CSFs.

  3. Note that Hurley (1998) mentions that rent dissipation can be a misleading measure of the welfare implications of a contest when players have asymmetric valuations.

  4. Esteban and Ray (2001) and Baik (2007) study contests with group-specific public goods prizes. Esteban and Ray (2001) consider a collective action with three features: it is undertaken in order to counter similar action by competing groups, marginal individual efforts are increasingly costly and collective prizes are seen to have mixed public–private characteristics. All individuals in a group are assumed to have the same benefit from the public good, while private goods benefit the group as a whole. Thus, increasing the size of the group decreases the benefit to each of its members. Esteban and Ray (2001) show that there exist conditions under which increasing the size of the group will increase the probability of winning, even though the benefit per member has decreased. Baik (2007), on the other hand, presents a model in which \(n \)groups compete to win a group-specific public goods prize, the individual players choose their effort levels simultaneously and independently and the probability of winning depends on the level of the groups’ efforts.

  5. For \(\alpha =1\), Baik (2007) applies.

  6. Based on the calculations presented in the Appendix and according to Part 2.a in Proposition 1, there may exist combinations of \(k\) and \(\alpha \) for which the condition \(N<\left[ {\frac{\alpha k-1+\sqrt{\alpha k\left( {\alpha k-2} \right) }}{k^{\alpha }}} \right] ^{\frac{1}{1-\alpha }}\) does not hold. However, according to Part 2.b in Proposition 1 there exists an interval of values of \(N\) that satisfies the condition. In order to prove this, we need to show that the RHS of the inequality in Part 2.b is greater than one\(. \)Since \(k\le \frac{\alpha }{2}\), it holds that \(\frac{\alpha -k+\sqrt{\alpha \left( {\alpha -2k} \right) }}{k^{1+\alpha }}\ge \frac{\alpha -0.5\alpha +\sqrt{\alpha \left( {\alpha -2k} \right) }}{\left( {0.5\alpha } \right) ^{1+\alpha }}\ge \frac{\alpha -0.5\alpha }{\left( {0.5\alpha } \right) ^{1+\alpha }}=\left( {\frac{2}{\alpha }} \right) ^{\alpha }>1\).

  7. \(k^{\frac{\alpha }{\alpha -1}}\) is not necessarily a natural number in the discussion of Proposition 2, but we kept it as \(k^{\frac{\alpha }{\alpha -1}}\) in Proposition 2.1.a for simplicity. When \(k^{\frac{\alpha }{\alpha -1}}\) is not a natural number, denote \(B\) as the highest natural number that is lower than \(k^{\frac{\alpha }{\alpha -1}}\) (thus it holds that \(B<k^{\frac{\alpha }{\alpha -1}}<B+1)\). Then \(N^{*}=k^{\frac{\alpha }{\alpha -1}}\) should be rounded to \(B+1\) when \(B\left( {B+1} \right) <k^{\frac{2\alpha }{\alpha -1}}\). For proof see the Appendix.

  8. Since in this case, which is described in the previous footnote, there exists an interval of values of \(N\) such that \(RD_\mathrm{A}^*<RD_\mathrm{L}^*\), it is clear that if we choose the \(N\) that maximizes rent dissipation under the generalized logit CSF, i.e.\(N^{*}=k^{\frac{\alpha }{\alpha -1}}\), then for this size of the non-governed group \(RD_\mathrm{A}^*<RD_\mathrm{L}^*\).

References

  • Amegashie, J. A. (2000). Some results on rent-seeking contests with shortlisting. Public Choice, 105(3–4), 245–253.

    Article  Google Scholar 

  • Baik, K. H. (2007). Contests with groups-specific public-good prizes. Social Choice and Welfare, 30(1), 103–117.

    Article  Google Scholar 

  • Baik, K. H. (1999). Rent-seeking firms, consumer groups, and the social costs of monopoly. Economic Inquiry, 37(3), 542–554.

    Article  Google Scholar 

  • Baik, K. H., Kim, I., & Na, S. (2001). Bidding for a group-specific public-good prize. Journal of Public Economics, 82, 415–429.

    Article  Google Scholar 

  • Baye, M. R., Kovenock, D., & de Vries, C. (1993). Rigging the lobbying process: an application of the all-pay auction. American Economic Review, 83(289), 294.

    Google Scholar 

  • Baye, Michael R., & Hoppe, Heidrun. (2003). ”The strategic equivalence of rent-seeking innovation, and patent-race games. Games and Economic Behavior, 44(2), 217–226.

    Article  Google Scholar 

  • Blavatskyy, Pavlo R. (2010). Contest success function with the possibility of a draw: Axiomatization. Journal of Mathematical Economics, 46, 267–276.

    Article  Google Scholar 

  • Che, Y. K., & Gale, I. (1997). Rent dissipation when rent seekers are budget constrained. Public Choice, 92, 109–126.

    Article  Google Scholar 

  • Che, Y. K., & Gale, I. (1998). Caps on political lobbying. American Economic Review., 88, 643–651.

    Google Scholar 

  • Che, Y. K., & Gale, I. (2003). Optimal design of research contests. American Economic Review, 93(3), 646–671.

    Article  Google Scholar 

  • Corchón, Luis, & Dahm, Matthias. (2010). Foundations for contest success functions. Economic Theory, 43, 81–98.

    Article  Google Scholar 

  • Ellingsen, T. (1991). Strategic buyers and the social cost of monopoly. American Economic Review, 81(3), 648–657.

    Google Scholar 

  • Esteban, J., & Ray, D. (2001). Collective action and the group size paradox. American Political Science Review, 95, 663–672.

    Article  Google Scholar 

  • Epstein, G. S., & Mealem, Y. (2009). Group specific public goods, orchestration of interest groups with free riding. Public Choice, 139(3), 357–369.

    Article  Google Scholar 

  • Epstein, G. S., & Mealem, Y. (2012). Governing interest groups and rent dissipation. Journal of Public Economic Theory, 14(3), 423–440.

  • Epstein, G. S., Mealem, Y., & Nitzan, S. (2011). Political culture and discrimination in contests. Journal of Public Economics, 95, 88–93.

    Article  Google Scholar 

  • Epstein, Gil S.; Mealem, Yosef and Nitzan, Shmuel. (2013). Lotteries vs. all-pay auctions in fair and biased contests. Economics and Politics, 25, 48–60

  • Epstein, G. S., & Nitzan, S. (2002). Endogenous public policy politicization and welfare. Journal of Public Economic Theory, 4(4), 661–677.

    Article  Google Scholar 

  • Epstein, G. S., & Nitzan, S. (2003). Political culture and monopoly price determination. Social Choice and Welfare, 21(1), 1–19.

    Article  Google Scholar 

  • Epstein, G. S., & Nitzan, S. (2006a). Effort and performance in public policy contests. Journal of Public Economic Theory, 8(2), 265–282.

    Article  Google Scholar 

  • Epstein, G. S., & Nitzan, S. (2006b). The politics of randomness. Social Choice and Welfare, 27(2), 423–433.

    Article  Google Scholar 

  • Epstein, G. S., & Nitzan, S. (2007). Endogenous public policy and contests. Berlin: Springer.

    Google Scholar 

  • Franke, J. (2012). Affirmative action in contest games. European Journal of Political Economy, 28(1), 115–118.

    Article  Google Scholar 

  • Franke, J., Kanzow, C., Leininger, W., Schwartz, A. (2013). Effort maximization in asymmetric contest games with heterogeneous contestants. Economic Theory, 2, 589–630.

  • Franke, J., Kanzow, C., Leininger, W., Schwartz, A., (2014). Lottery versus all-pay auction contests—A revenue dominance theorem. Games and Economic Behavior, 83, 116–126.

  • Fullerton, R. L., & Preston McAfee, R. (1999). Auctioning entry into tournaments. Journal of Political Economy, 107(3), 573–605.

    Article  Google Scholar 

  • Glazer, A., & Hassin, R. (1988). Optimal contests. Economic Inquiry, 26(1), 133–143.

    Article  Google Scholar 

  • Gradstein, M. (1995). Intensity of competition, entry and entry deterrence in rent-seeking contests. Economics and Politics, 7, 79–91.

    Article  Google Scholar 

  • Gradstein, M. (1998). Optimal contest design: Volume and timing of rent seeking in contests. European Journal of Political Economy, 14(4), 575–585.

    Article  Google Scholar 

  • Gradstein, M., & Konrad, K. (1999). Orchestrating rent seeking contests. Economic Journal, 109, 536–545.

    Article  Google Scholar 

  • Grossman, G., & Helpman, E. (2001). Special interest politics. Cambridge: MIT Press.

    Google Scholar 

  • Hillman, A. L., & Riley, J. G. (1989). Politically contestable rents and transfers. Economics and Politics, 1, 17–39.

    Article  Google Scholar 

  • Hurley, T. M., & Shogren, J. F. (1998). Effort levels in Cournot–Nash contests with asymmetric information. Journal of Public Economics, 69, 195–210.

    Article  Google Scholar 

  • Hurley, T. M. (1998). Rent dissipation and efficiency in a contest with asymmetric valuation. Pubic Choice, 94, 289–298.

    Article  Google Scholar 

  • Jia, H. (2008). A stochastic derivation of the ratio form of contest success functions. Public Choice, 135, 125–130.

    Article  Google Scholar 

  • Jia, H. (2010). On a class of contest success functions. The B.E. Journal of Theoretical Economics, 10(1), 1–12.

  • Kahana, N., & Nitzan, S. (1999). Uncertain pre-assigned non-contestable and contestable rents. European Economic Review, 43, 1705–1721.

    Article  Google Scholar 

  • Konrad, K. (2002). Investment in the absence of property rights; the role of incumbency advantages. European Economic Review, 46(8), 1521–1537.

    Article  Google Scholar 

  • Konrad, A. K. (2004). Bidding in hierarchies. European Economic Review, 48(6), 1301–1308.

    Article  Google Scholar 

  • (2009). Strategy and dynamics in contests (London School of Economic Perspectives in Economic Analysis). New York: Oxford University Press.

  • Konrad, K. A., & Schlesinger, H. (1997). Risk aversion in rent seeking and rent augmenting games. Economic Journal, 107(2), 1671–1683.

    Article  Google Scholar 

  • Li, S., & Yu, J. (2012). Contests with endogenous discrimination. Economics Letters, 117(3), 834–836.

  • Lien, D. (1990). Corruption and allocation efficiency. Journal of Development Economics, 33, 153–164.

    Article  Google Scholar 

  • Mealem, Y., & Nitzan, S. (2012). Differential prize taxation and structural discrimination in contests. Working Paper No 3831, CESifo.

  • Mealem, Y., & Nitzan, S. (2014). Equity and effectiveness of optimal taxation in contests under an all pay auction. Social Choice and Welfare, 42(2), 437–464.

  • Moldovanu, M., & Sela, A. (2006). Contest architecture. Journal of Economic Theory, 126(1), 70–96.

    Article  Google Scholar 

  • Munster, J. (2009). Group contest success functions. Economic Theory, 41(2), 345–357.

    Article  Google Scholar 

  • Nitzan, S. (1994). Modelling rent-seeking contests. European Journal of Political Economy, 10(1), 41–60.

    Article  Google Scholar 

  • Nti, K. O. (1997). Comparative statics of contests and rent seeking games. International Economic Review, 38(1), 43–59.

    Article  Google Scholar 

  • Nti, K. O. (2004). Maximum efforts in contests with asymmetric valuations. European Journal of Political Economy, 20(4), 1059–1066.

    Article  Google Scholar 

  • Persson, T., & Tabellini, G. (2000). Political economics: Explaining economic policy. Cambridge: MIT Press.

    Google Scholar 

  • Riaz, K., Shogren, J. F., & Johnson, S. R. (1995). A general model of rent seeking for public goods. Public Choice, 82, 243–259.

    Article  Google Scholar 

  • Runkel, M. (2006). Optimal contest design closeness and the contest success function. Public Choice, 129, 217–231.

    Article  Google Scholar 

  • Schmidt, T. (1992). Rent-seeking firms and consumers: an equilibrium analysis. Economics and Politics, 4(2), 137–149.

    Article  Google Scholar 

  • Singh, N., & Wittman, D. (1998). Contest design and the objective of the contest designer: Sales, promotion, sports events and patent races. In M. R. Baye (Ed.), Advances in microeconomics (Vol. 7, pp. 139–167). Greenwich: JAI Press.

    Google Scholar 

  • Skaperdas, S. (1996). Contest success functions. Economic Theory, 7, 283–290.

    Article  Google Scholar 

  • Taylor, C. R. (1995). Digging for golden carrots: An analysis of research tournaments. American Economic Review, 85(4), 872–890.

    Google Scholar 

  • Tullock, G. (1980). Efficient rent-seeking. In J. M. Buchanan, R. D. Tollison, & G. Tullock (Eds.), Toward a theory of the rent-seeking society (pp. 97–112). College Station: Texas A. & M. University Press.

    Google Scholar 

Download references

Acknowledgments

Financial support from the Adar Foundation of the Department of Economics of Bar-Ilan University is gratefully acknowledged. We are grateful to the referees for their constructive comments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil S. Epstein.

Appendix

Appendix

Proof of proposition 1

a. For \(k\ge 1\) .

$$\begin{aligned} RD_\mathrm{L}^*=\frac{\alpha N^{1-\alpha }k^{\alpha }\left( {n+m} \right) }{\left( {N^{1-\alpha }k^{\alpha }+1} \right) ^{2}}<\frac{n+m}{2k}=RD_\mathrm{A}^*\end{aligned}$$
(1a)

Rewriting (1a), we obtain that (1a) holds if the following inequality holds:

$$\begin{aligned} N^{2-2\alpha }k^{2\alpha }+2N^{1-\alpha }k^{\alpha }\left( {1-\alpha k} \right) +1>0 \end{aligned}$$
(2a)

Denote \(z=N^{1-\alpha }\). (1a) becomes

$$\begin{aligned} z^{2}k^{2\alpha }-2zk^{\alpha }\left( {\alpha k-1} \right) +1>0. \end{aligned}$$
(3a)

We now wish to find the \(N\) that satisfies (3a).

If \((1\le )k\le \frac{2}{\alpha }\), the determinant of (3a) is not positive, and thus \(z^{2}k^{2\alpha }-2zk^{\alpha }\left( {\alpha k-1} \right) +1>0\) always holds. However, if \(k>\frac{2}{\alpha }\) then (3a) holds for the following values:

$$\begin{aligned} \begin{array}{l} N<\left[ {\frac{\alpha k-1-\sqrt{\alpha k\left( {\alpha k-2} \right) }}{k^{\alpha }}} \right] ^{\frac{1}{1-\alpha }}\\ \hbox {or }\\ N>\left[ {\frac{\alpha k-1+\sqrt{\alpha k\left( {\alpha k-2} \right) }}{k^{\alpha }}} \right] ^{\frac{1}{1-\alpha }}\\ \end{array} \end{aligned}$$
(4a)

We will show that for \(k>\frac{2}{\alpha }\) the first inequality is not possible; therefore, the second inequality remains. \(\alpha k-1-\sqrt{\alpha k\left( {\alpha k-2} \right) }<1\) holds for all values of \(k>\frac{2}{\alpha }\). Since \(k>\frac{2}{\alpha }>1\), then \(k^{\alpha }>1\). Thus, \(\left[ {\frac{\alpha k-1-\sqrt{\alpha k\left( {\alpha k-2} \right) }}{k^{\alpha }}} \right] ^{\frac{1}{1-\alpha }}<1<N\). We conclude that if \(k>\frac{2}{\alpha }\), then for \(N\) that satisfies \(N>\left[ {\frac{\alpha k-1+\sqrt{\alpha k\left( {\alpha k-2} \right) }}{k^{\alpha }}} \right] ^{\frac{1}{1-\alpha }}\) it holds that \(RD_\mathrm{L}^*<RD_\mathrm{A}^*\). If \(N=\left[ {\frac{\alpha k-1+\sqrt{\alpha k\left( {\alpha k-2} \right) }}{k^{\alpha }}} \right] ^{\frac{1}{1-\alpha }}\), then \(RD_\mathrm{L}^*=RD_\mathrm{A}^*\); otherwise \(RD_\mathrm{L}^*>RD_\mathrm{A}^*\).

We will now show that the condition \(N>\left[ {\frac{\alpha k-1+\sqrt{\alpha k\left( {\alpha k-2} \right) }}{k^{\alpha }}} \right] ^{\frac{1}{1-\alpha }}\) has substance. Denote \(f(k)=\left[ {\frac{\alpha k-1+\sqrt{\alpha k(\alpha k-2)}}{k^{\alpha }}} \right] ^{\frac{1}{1-\alpha }}\). We will show that for all \(0<\alpha <1\) and \(k>\frac{2}{\alpha }\), \(f(k)\) increases with \(k\) and that when \(k\rightarrow \frac{2}{\alpha }\) it holds that \(f<1\) (namely \(N>f\) for all \(N)\) and when \(k\rightarrow \infty \), then \(f\rightarrow \infty \) (thus, there exist values for which \(N>f)\). First, \(\frac{\partial f}{\partial k}=\frac{1}{\left( {1-\alpha } \right) k^{2\alpha }}\left\langle {\begin{array}{l} \left\{ {\alpha +0.5\left[ {\alpha k(\alpha k-2)} \right] ^{-0.5}\left( {2\alpha ^{2}k-2\alpha } \right) } \right\} k^{\alpha } \\ -\alpha k^{\alpha -1}\left\{ {\alpha k-1+\left[ {\alpha k(\alpha k-2)} \right] ^{0.5}} \right\} \\ \end{array}} \right\rangle ^{\frac{\alpha }{1-\alpha }}\) which is identical to \(\frac{\partial f}{\partial k}=\frac{\alpha }{\left( {1-\alpha } \right) k^{\alpha }}\left[ {1-\alpha +\frac{1}{k}+\frac{\left( {\alpha k-1} \right) \left( {1-\alpha } \right) +\alpha }{\left[ {\alpha k(\alpha k-2)} \right] ^{0.5}}} \right] ^{\frac{\alpha }{1-\alpha }}>0\). Since when \(k=\frac{2}{\alpha }(>2)\) we obtain \(f=\left[ {\frac{1}{k^{\alpha }}} \right] ^{\frac{1}{1-\alpha }}=k^{\frac{\alpha }{\alpha -1}}=k^{\frac{2}{2-k}}<1\) and \(f=\left[ {\frac{\alpha -\frac{1}{k}+\sqrt{\alpha \left( {\alpha -\frac{2}{k}} \right) }}{k^{\alpha -1}}} \right] ^{\frac{1}{1-\alpha }}\)therefore when \(k\rightarrow \infty \) we obtain \(f\rightarrow \left( {2\alpha } \right) ^{\frac{1}{1-\alpha }}k\rightarrow \infty \).

b. For \(k<1\). (1a) becomes:

$$\begin{aligned} RD_\mathrm{L}^*=\frac{\alpha N^{1-\alpha }k^{\alpha }\left( {n+m} \right) }{\left( {N^{1-\alpha }k^{\alpha }+1} \right) ^{2}}<\frac{k\left( {n+m} \right) }{2}=RD_\mathrm{A}^*. \end{aligned}$$

This inequality is identical to \(N^{2-2\alpha }k^{1+\alpha }+2N^{1-\alpha }\left( {k-\alpha } \right) +k^{1-\alpha }>0\) and its determinant is \(4\alpha k^{2\alpha }\left( {\alpha -2k} \right) \). If the determinant is negative, which means that \(\frac{\alpha }{2}<k(<1)\), then \(RD_\mathrm{L}^*<RD_\mathrm{A}^*\). If the determinant is positive, which means that \(k<\frac{\alpha }{2}\), then \(RD_\mathrm{L}^*<RD_\mathrm{A}^*\) if:

$$\begin{aligned}&N^{1-\alpha }<\frac{2k^{\alpha }\left( {\alpha -k} \right) -\sqrt{4\alpha k^{2\alpha }\left( {\alpha -2k} \right) }}{2k^{2\alpha +1}} \hbox { or }\\&N^{1-\alpha }>\frac{2k^{\alpha }\left( {\alpha -k} \right) +\sqrt{4\alpha k^{2\alpha }\left( {\alpha -2k} \right) }}{2k^{2\alpha +1}} \end{aligned}$$

or

$$\begin{aligned}&N^{1-\alpha }<\frac{2k^{\alpha }\left( {\alpha -k} \right) -2k^{\alpha }\sqrt{\alpha \left( {\alpha -2k} \right) }}{2k^{2\alpha +1}} \hbox { or }\\&N^{1-\alpha }>\frac{2k^{\alpha }\left( {\alpha -k} \right) +2k^{\alpha }\sqrt{\alpha \left( {\alpha -2k} \right) }}{2k^{2\alpha +1}} \end{aligned}$$

or

$$\begin{aligned} N<\left[ {\frac{\alpha -k-\sqrt{\alpha \left( {\alpha -2k} \right) }}{k^{1+\alpha }}} \right] ^{\frac{1}{1-\alpha }}\hbox { or } N>\left[ {\frac{\alpha -k+\sqrt{\alpha \left( {\alpha -2k} \right) }}{k^{1+\alpha }}} \right] ^{\frac{1}{1-\alpha }} \end{aligned}$$
(5a)

From \(a\) and \(b\) we obtain Proposition 1. \(\square \)

Proof of Proposition 2

The first-order condition for maximization is:

$$\begin{aligned} \frac{\partial RD_\mathrm{L}^*}{\partial N}=\alpha k^{\alpha }\left( {n+m} \right) \left( {1-\alpha } \right) N^{-\alpha }\frac{\left( {1-k^{\alpha }N^{1-\alpha }} \right) }{\left( {N^{1-\alpha }k^{\alpha }+1} \right) ^{3}}=0. \end{aligned}$$

Solving the first-order condition yields \(N=k^{\frac{\alpha }{\alpha -1}}\) and it can be verified that the second-order conditions for maximization hold.

Part 1.a: For \(k<1\), it holds that \(N=k^{\frac{\alpha }{\alpha -1}}>1\), while for \(N<k^{\frac{\alpha }{\alpha -1}}\), \(RD_\mathrm{L}^*\) increases with \(N\) and for \(N>k^{\frac{\alpha }{\alpha -1}}\), \(RD_\mathrm{L}^*\) decreases with \(N\). Therefore, when \(N_\mathrm{P} \ge k^{\frac{\alpha }{\alpha -1}}\) the maximal level of \(RD_\mathrm{L}^*\) is attained by limiting the size of the non-governed interest group to \(N^{*}=k^{\frac{\alpha }{\alpha -1}}\) and for \(N_\mathrm{P} <k^{\frac{\alpha }{\alpha -1}}\) the maximal level of \(RD_\mathrm{L}^*\) is attained at \(N^{*}=N_\mathrm{P}\).

Part 1.b: For \(k\ge 1\), it holds that \(N=k^{\frac{\alpha }{\alpha -1}}\le 1\). Thus, for all \(N>1\), \(RD_\mathrm{L}^*\) decreases with \(N\) and the maximal level of \(RD_\mathrm{L}^*\) is attained at \(N^{*}=1\).

Part 2: For \(k<1\), given the proof of 1.a, it holds that \(N=k^{\frac{\alpha }{\alpha -1}}>1\). For \(N<k^{\frac{\alpha }{\alpha -1}}\), \(RD_\mathrm{L}^*\) increases in \(N\) and for \(N>k^{\frac{\alpha }{\alpha -1}}\), \(RD_\mathrm{L}^*\) decreases in \(N\). Thus, the minimal \(RD_\mathrm{L}^*\) is attained at a corner solution of either \(N^{*}=1\) or \(N^{*}=N_\mathrm{P}\). We now show the conditions for obtaining each of these two solutions. The legislators/regulators will be indifferent between \(N=N_\mathrm{P} \) and \(N=1\) when:

$$\begin{aligned} RD_\mathrm{L}^*(N_\mathrm{P} )=\frac{\alpha N_\mathrm{P}^{1-\alpha } k^{\alpha }\left( {n+m} \right) }{\left( {N_\mathrm{P}^{1-\alpha } k^{\alpha }+1} \right) ^{2}}=\frac{\alpha k^{\alpha }\left( {n+m} \right) }{\left( {k^{\alpha }+1} \right) ^{2}}=RD_\mathrm{L}^*(N=1). \end{aligned}$$

namely, if \(\frac{N_\mathrm{P}^{1-\alpha } }{\left( {N_\mathrm{P}^{1-\alpha } k^{\alpha }+1} \right) ^{2}}=\frac{1}{\left( {k^{\alpha }+1} \right) ^{2}}\) which is identical to \(N_\mathrm{P}^{2-2\alpha } k^{2\alpha }-N_\mathrm{P}^{1-\alpha } \left( {k^{2\alpha }+1} \right) +1=0\). Denote \(w=N_\mathrm{P}^{1-\alpha } \) and the equation becomes \(w^{2}k^{2\alpha }-w\left( {k^{2\alpha }+1} \right) +1=0\). Solving this equality, we obtain that \(N_\mathrm{P} =\,k^{\frac{2\alpha }{\alpha -1}}\) or \(N_\mathrm{P} =\,1\). At the value of \(N=k^{\frac{2\alpha }{\alpha -1}}\), \(RD_\mathrm{L}^*\) decreases with \(N. \)Therefore:

  1. a.

    If \(N_\mathrm{P} >k^{\frac{2\alpha }{\alpha -1}}\), we obtain \(RD_\mathrm{L}^*(N_\mathrm{P} )<RD_\mathrm{L}^*(N=1)\) and the value that minimizes \(RD_\mathrm{L}^*\) is \(N^{*}=N_\mathrm{P} \) such that \(RD_\mathrm{L}^*=\frac{\alpha N_\mathrm{P}^{1-\alpha } k^{\alpha }\left( {n+m} \right) }{\left( {N_\mathrm{P}^{1-\alpha } k^{\alpha }+1} \right) ^{2}}\).

  2. b.

    If \((1<)N_\mathrm{P} <k^{\frac{2\alpha }{\alpha -1}}\), we obtain \(RD_\mathrm{L}^*(N_\mathrm{P} )>RD_\mathrm{L}^*(N=1)\) and the value that minimizes \(RD_\mathrm{L}^*\) is \(N^{*}=1\) such that \(RD_\mathrm{L}^*=\frac{\alpha k^{\alpha }\left( {n+m} \right) }{\left( {k^{\alpha }+1} \right) ^{2}}\).

For \(k\ge 1\), from the proof of 1.b, the maximal level of \(RD_\mathrm{L}^*\) is obtained when \(N=1\). This value, \(RD_\mathrm{L}^*\), decreases as \(N\) increases. Thus, the minimal \(RD_\mathrm{L}^*\) is attained at \(N^{*}=N_\mathrm{P} \). \(\square \)

Proof of footnote 7

Assume that \(k^{\frac{\alpha }{\alpha -1}}\) is not a natural number. Denote \(B\) as the highest natural number that is lower than \(k^{\frac{\alpha }{\alpha -1}}\), thus it holds that \(B<k^{\frac{\alpha }{\alpha -1}}<B+1\). It follows that we have to round upward \(N^{*}=k^{\frac{\alpha }{\alpha -1}}\) to \(B+1\), if it holds that

$$\begin{aligned} \frac{\alpha \left( {B+1} \right) ^{1-\alpha }k^{\alpha }\left( {n+m} \right) }{\left( {\left( {B+1} \right) ^{1-\alpha }k^{\alpha }+1} \right) ^{2}}>\frac{\alpha B^{1-\alpha }k^{\alpha }\left( {n+m} \right) }{\left( {B^{1-\alpha }k^{\alpha }+1} \right) ^{2}} \end{aligned}$$

or

$$\begin{aligned} \frac{\left( {B+1} \right) ^{1-\alpha }}{\left( {\left( {B+1} \right) ^{1-\alpha }k^{\alpha }+1} \right) ^{2}}>\frac{B^{1-\alpha }}{\left( {B^{1-\alpha }k^{\alpha }+1} \right) ^{2}}. \end{aligned}$$

Taking the square root of both sides we obtain

$$\begin{aligned} \frac{\left( {B+1} \right) ^{\frac{1-\alpha }{2}}}{\left( {B+1} \right) ^{1-\alpha }k^{\alpha }+1}>\frac{B^{\frac{1-\alpha }{2}}}{B^{1-\alpha }k^{\alpha }+1}. \end{aligned}$$

Rewiring this inequality we get

$$\begin{aligned}&\left( {B+1} \right) ^{0.5(1-\alpha )}\left( {B^{1-\alpha }k^{\alpha }+1} \right) >B^{0.5(1-\alpha )}\left[ {\left( {B+1} \right) ^{1-\alpha }k^{\alpha }+1} \right] \\&\left( {B+1} \right) ^{0.5(1-\alpha )}B^{1-\alpha }k^{\alpha }+\left( {B+1} \right) ^{0.5(1-\alpha )}>B^{0.5(1-\alpha )}\left( {B+1} \right) ^{1-\alpha }k^{\alpha }+B^{0.5(1-\alpha )}\\&\left( {B+1} \right) ^{0.5(1-\alpha )}-B^{0.5(1-\alpha )}>B^{0.5(1-\alpha )}\left( {B+1} \right) ^{1-\alpha }k^{\alpha }-\left( {B+1} \right) ^{0.5(1-\alpha )}B^{1-\alpha }k^{\alpha }\\&\left( {B+1} \right) ^{0.5(1-\alpha )}-B^{0.5(1-\alpha )}>B^{0.5(1-\alpha )}\left( {B+1} \right) ^{0.5(1-\alpha )}k^{\alpha }\left[ {\left( {B+1} \right) ^{0.5(1-\alpha )}-B^{0.5(1-\alpha )}} \right] \\&\left( {B+1} \right) ^{0.5(1-\alpha )}-B^{0.5(1-\alpha )} >\left[ {B\left( {B+1} \right) } \right] ^{0.5(1-\alpha )}k^{\alpha }\left[ {\left( {B+1} \right) ^{0.5(1-\alpha )}-B^{0.5(1-\alpha )}} \right] \end{aligned}$$

Since \(\left( {B+1} \right) ^{0.5(1-\alpha )}-B^{0.5(1-\alpha )}>0\), we obtain that the last inequality is identical to

$$\begin{aligned} \left[ {B\left( {B+1} \right) } \right] ^{0.5(1-\alpha )}k^{\alpha }<1 \end{aligned}$$

or

$$\begin{aligned} B\left( {B+1} \right) <k^{\frac{2\alpha }{\alpha -1}} \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epstein, G.S., Mealem, Y. Politicians, governed versus non-governed interest groups and rent dissipation. Theory Decis 79, 133–149 (2015). https://doi.org/10.1007/s11238-014-9454-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-014-9454-z

Keywords

Navigation