Skip to main content
Log in

Influence of Acid–Base Properties of MFe2O4 Ferrites (M(II) = Fe, Mg, Mn, Zn) on Their Selectivity in the Conversion of Ethanol to Acetone

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The acidity and basicity of MFe2O4 (M(II) = Fe, Mg, Mn, Zn) ferrites of the spinel structure have been characterized by temperature-programmed desorption of NH3 and CO2. It is shown that both medium-strength basic and acid sites play an important role in the process of acetone obtaining from ethanol over ferrites. The selectivity of ethanol conversion to acetone depends both on the acid–base properties of the surface and on the ability of the surface oxygen of ferrite to participate in the intermediate redox stages of formation and steam reforming of acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. F. F. De Lima, C. R. Moreira, O. C. Alves, et al., Appl. Catal. A., 611, 117949 (2021).

    Article  Google Scholar 

  2. C. P. Rodrigues, P. C. Zonetti, and L. G. Appel, Chem. Cent. J., 11, 30 (2017).

    Article  CAS  Google Scholar 

  3. L. R. Silva-Calpa, P. C. Zonetti, D. C. Oliveira, et al., Catal. Today, 289, 264-272 (2017).

    Article  CAS  Google Scholar 

  4. X. Li, A. Kant, Y. He, et al., Catal. Today, 276, 62-77 (2016).

    Article  CAS  Google Scholar 

  5. V. Zacharopoulou and A. A. Lemonidou, Catalysts, 8, 2-19 (2018).

    Article  Google Scholar 

  6. R. Huang, V. Fung, Z. Wu, and D. Jiang, Catal. Today, 350, 19-24 (2019).

    Article  Google Scholar 

  7. F. Hayashi, M. Tanaka, D. Lin, and M. Iwamoto, J. Catal., 316, 112-120 (2014).

    Article  CAS  Google Scholar 

  8. M. Iwamoto, Catal. Today, 242, 243-248 (2015).

    Article  CAS  Google Scholar 

  9. Y. Pyatnitsky, L. Dolgikh, L. Senchylo, et al., Theor. Exp. Chem., 55, 50-55 (2019).

    Article  CAS  Google Scholar 

  10. Y. Pyatnitsky, L. Dolgikh, L. Senchylo, et al., Chem. Pap., 75, 5773-5779 (2021).

    Article  CAS  Google Scholar 

  11. L. Y. Dolgikh, I. L. Stolyarchuk, L. A. Staraya, et al., Theor. Exp. Chem., 54, 349-357 (2018).

    Article  CAS  Google Scholar 

  12. T. Nakajima, H. Nameta, S. Mishima, et al., J. Mater. Chem., 4, 853-858 (1994).

    Article  CAS  Google Scholar 

  13. J. I. Di Cosimo, V. K. Diez, M. Xu, et al., J. Catal., 178, 499-510 (1998).

    Article  Google Scholar 

  14. H. Song, L. Zhang, and U. S. Ozkan, Top. Catal., 55, 1324-1331 (2012).

    Article  CAS  Google Scholar 

  15. J. Sun, K. Zhu, F. Gao, et al., J. Am. Chem. Soc., 133, 11096-11099 (2011).

    Article  CAS  Google Scholar 

  16. I. L. Stolyarchuk, L. Yu. Dolgykh, I. V. Vasylenko, et al., Theor. Exp. Chem., 52, 246-251 (2016).

    Article  CAS  Google Scholar 

  17. A. Auroux and A. Gervasini, Phys.Chem., 94, 6371-6379 (1990).

    Article  CAS  Google Scholar 

  18. M. B. Jensen, L. G. M. Pettersson, O. Swang, et al., J. Phys. Chem. B., 109, 16774-16781 (2005).

    Article  CAS  Google Scholar 

  19. V. K. Diez, C. R. Apestegua, and J. I. Di Cosmo, J. Catal., 240, 235-244 (2006).

    Article  CAS  Google Scholar 

  20. R. S. Murthy, P. Patnaik, P. Sidheswaran, et al., J. Catal., 109, 298-302 (1988).

    Article  CAS  Google Scholar 

  21. K. Inui, T. Kurabayashi, and S. Sato, J. Catal., 212, 207-215 (2002).

    Article  CAS  Google Scholar 

  22. T. Nishiguchi, T. Matsumoto, H. Kanai, et al., Appl. Catal. A., 279, 73-77 (2005).

    Article  Google Scholar 

  23. T. Nakajima, K. Tanabe, T. Yamaguchi, et al., Appl. Catal., 52, 237-248 (1989).

    CAS  Google Scholar 

  24. J. Bussi, S. Parodi, B. Irigaray, et al., Appl. Catal. A., 172, 117-129 (1998).

    Article  CAS  Google Scholar 

  25. H. Hattori, Chem. Rev., 95, 537-558 (1995).

    Article  CAS  Google Scholar 

  26. F. Hayashi, M. Tanaka, D. Lin, et al., J. Catal., 316, 112-120 (2014).

    Article  CAS  Google Scholar 

  27. G. G. Gonzalez, P. C. Zonetti, E. B. Silveira, et al., J. Catal., 380, 343-351 (2019).

    Article  CAS  Google Scholar 

  28. K. Takeshita, S. Nakamura, and K. Kawamoto, Bull. Chem. Soc. Jpn., 51, 2622-2627 (1978).

    Article  CAS  Google Scholar 

  29. L. V. Mattos, G. Jacobs, B. H. Davis, et al., Chem. Rev., 112, 4094-4123 (2012).

    Article  CAS  Google Scholar 

  30. J. I. Di Cosmo, C. R. Apesteguia, M. J. L. Gines, et al., J. Catal., 190, 261-275 (2000).

    Article  Google Scholar 

  31. M. V. Ganduglia-Pirovano, Catal. Today, 253, 20-32 (2015).

    Article  CAS  Google Scholar 

  32. J. E. Rorrer, F. D. Toste, and A. T. Bell, ACS Catal., 9, 10588-10604 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Dolgikh.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 4, pp. 259-264, July-August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgikh, L.Y., Stolyarchuk, I.L., Stara, L.O. et al. Influence of Acid–Base Properties of MFe2O4 Ferrites (M(II) = Fe, Mg, Mn, Zn) on Their Selectivity in the Conversion of Ethanol to Acetone. Theor Exp Chem 58, 290–296 (2022). https://doi.org/10.1007/s11237-022-09746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09746-1

Keywords

Navigation