Skip to main content
Log in

Luminescent and Photocatalytic Properties of Bulk and Crystalline Graphitic Carbon Nitride

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The photoluminescence of bulk graphitic carbon nitride (g-C3N4), crystalline carbon nitride (CGCN) obtained by thermal treatment of g-C3N4 in LiCl and KCl melts, and CGCN treated with a lactic acid solution (AT-CGCN) has been studied. It has been established that the luminescent properties largely depend on their morphology and the presence of impurities as well as structural defects. It is shown that there is an antibatic dependence between the luminescence intensity and the photocatalytic activity of the samples in the ethanol oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. T. O. Ajiboye, A. T. Kuvarega, and D. C. Onwudiwe, Nano-Struct. Nano-Objects, 24, 100577 (2020), https://doi.org/10.1016/j.nanoso.2020.100577.

    Article  CAS  Google Scholar 

  2. N. Rono, J. K. Kibet, B. S. Martincigh, and V. O. Nyamori, Crit. Rev. Solid State Mater. Sci., 46, No. 3, 189-217 (2021), https://doi.org/10.1080/10408436.2019.1709414.

    Article  CAS  Google Scholar 

  3. D. Vaya, B. Kaushik, and P. K. Surolia, Mater. Sci. Semicond. Proc., 137, 106181 (2022), https://doi.org/10.1016/j.mssp.2021.106181.

    Article  CAS  Google Scholar 

  4. J. Wen, J. Xie, X. Chen, and X. Li, Appl. Surf. Sci., 391, Part B, 72-123 (2017), https://doi.org/10.1016/j.apsusc.2016.07.030.

  5. L. Q. Jing, Q. Yichun, W. Baiqi, et al., Sol. Energy Mater. Sol. Cells, 90, No. 12, 1773-1787 (2006), https://doi.org/10.1016/j.solmat.2005.11.007.

    Article  CAS  Google Scholar 

  6. J. G. Yu, H. G. Yu, B. Chen, et al., J. Phys. Chem. B., 107, No. 50, 13871-13879 (2003), https://doi.org/10.1021/jp036158y.

    Article  CAS  Google Scholar 

  7. X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, J. Photochem. Photobiol. A., 141, No. 2-3, 209-217 (2001), https://doi.org/10.1016/S1010-6030(01)00446-4.

    Article  CAS  Google Scholar 

  8. L. Q. Jing, F. L. Yuan, H. G. Hou, et al., Sci. China B., 48, No. 1, 25-30 (2005), https://doi.org/10.1007/BF02990909.

    Article  CAS  Google Scholar 

  9. L. Q. Jing, X. J. Sun, B. F. Xin, et al., J. Solid State Chem., 177, No. 10, 3375-3382 (2004), https://doi.org/10.1016/j.jssc.2004.05.064.

    Article  CAS  Google Scholar 

  10. N. Andriushyna, V. Shvalagin, A. Korzhak, et al., Appl. Surf. Sci., 475, 348-354 (2019), https://doi.org/10.1016/j.apsusc.2018.12.287.

    Article  CAS  Google Scholar 

  11. V. V. Shvalagin, M. O. Kompanets, O. S. Kutsenko, et al., Theor. Exp. Chem., 56, No. 2, 111-116 (2020), https://doi.org/10.1007/s11237-020-09643-5.

    Article  CAS  Google Scholar 

  12. V. V. Shvalagin, G. V. Korzhak, S. Y. Kuchmiy, et al., J. Photochem. Photobiol. A., 390, 112295 (2020), https://doi.org/10.1016/j.jphotochem.2019.112295.

    Article  CAS  Google Scholar 

  13. V. V. Shvalagin, S. Ya. Kuchmiy, M. A. Skoryk, et al., Mater. Sci. Eng. B., 271, No. 2, 115304 (2021), https://doi.org/10.1016/j.mseb.2021.115304.

    Article  CAS  Google Scholar 

  14. Y. W. Yuan, L. L. Zhang, J. Xing, et al., Nanoscale, 7, No. 29, 12343-12350 (2015), https://doi.org/10.1039/C5NR02905H.

    Article  CAS  Google Scholar 

  15. B. Choudhury, K. K. Paul, D. Sanyal, et al., J. Phys. Chem. C., 122, No. 16, 9209-9219 (2018), https://doi.org/10.1021/acs.jpcc.8b01388.

    Article  CAS  Google Scholar 

  16. Y. Jiang, Z. Sun, C.Tang, et al., Appl. Catal. B., 240, 30-38 (2019), https://doi.org/10.1016/j.apcatb.2018.08.059.

    Article  CAS  Google Scholar 

  17. E. B. Chubenko, N. M. Denisov, A. V. Baglov, et al., Cryst. Res. Technol., 55, No. 3, 1900163 (2020), https://doi.org/10.1002/crat.201900163.

    Article  CAS  Google Scholar 

  18. L. K. Putri, B. J. Ng, C. C. Er, et al., Appl. Surf. Sci., 504, 144427 (2020), https://doi.org/10.1016/j.apsusc.2019.144427.

    Article  CAS  Google Scholar 

  19. A. B. Jorge, D. J. Martin, M. T. Dhanoa, et al., J. Phys. Chem. C., 117, No. 14, 7178-7185 (2013), https://doi.org/10.1021/jp4009338.

    Article  CAS  Google Scholar 

  20. Y. Wang, Sh. Zhao, Y. Zhang, et. al., Appl. Surf. Sci., 440, 258-265 (2018), https://doi.org/10.1016/j.apsusc.2018.01.091.

  21. M. Wu, J.-M. Yan, X. Tang, et al., Chem. Sus. Chem., 7, No. 9, 2654-2658 (2014), https://doi.org/10.1002/cssc.201402180.

    Article  CAS  Google Scholar 

  22. X. Fan, Z. Xing, Z. Shu, et al., RSC Adv., 5, No. 11, 8323-8328 (2015), https://doi.org/10.1039/C4RA16362A.

    Article  CAS  Google Scholar 

  23. H. Zhang and A. Yu, J. Phys. Chem. C., 118, No. 22, 11628-11635 (2014), https://doi.org/10.1021/jp503477x.

    Article  CAS  Google Scholar 

  24. A. L. Stroyuk, A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Theor. Exp. Chem., 41, No. 4, 207-228 (2005), https://doi.org/10.1007/s11237-005-0042-8.

    Article  CAS  Google Scholar 

  25. Z. Gan, Y. Shen, J. Chen, et al., Nano Res., 9, No. 6, 1801-1812 (2016), https://doi.org/10.1007/s12274-016-1073-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Kuchmiy.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 4, pp. 219-224, July-August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stara, T.R., Kuchmiy, S.Y. Luminescent and Photocatalytic Properties of Bulk and Crystalline Graphitic Carbon Nitride. Theor Exp Chem 58, 240–246 (2022). https://doi.org/10.1007/s11237-022-09740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09740-7

Keywords

Navigation