Skip to main content
Log in

Nanocomposite of Polyaniline with Partially Oxidized Graphene as the Transport Layer of Light-Emitting Polymer Diodes

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Feasibility has been demonstrated for the use of the interpolymer complex of polyaniline with poly(2-acrylamide-2-methyl-1-propanesulfonic acid) (PAni·PAMPSA) and its nanocomposite with partially oxidized graphene (PAni·PAMPSA/POGr) as a material for hole transport layers in the manufacture of polymer light-emitting diodes (PLED). A study was carried out on the functional characteristics of such PLED, which were compared with those of traditional PLED made with poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate anions (PEDOT/PSS). The PLED made with PAni·PAMPSA/POGr nanocomposites were shown to have better functional characteristics, namely, current density, brightness, current and luminous efficiency, than for the analogous heterostructures derived from the pure PAni·PAMPSA interpolymer complex. The PAni·PAMPSA/POGr nanocomposite may be used instead of PEDOT/PSS in the manufacture of efficient organic optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. C. Choi, Y. Kim, and C.-S. Ha, Progr. Polym. Sci., 33, No. 6, 581-630 (2008).

    Article  CAS  Google Scholar 

  2. A. C. Grimsdale, K. L. Chan, R. E. Martin, et al., Chem. Rev., 109, No. 3, 897-1091 (2009).

    Article  CAS  Google Scholar 

  3. P. M. Beaujuge and J. R. Reynolds, Chem. Rev., 110, No. 1, 268-320 (2010).

    Article  CAS  Google Scholar 

  4. P. Reiss, E. Couderc, J. De Girolamo, and A. Pron, Nanoscale, 3, 446-489 (2011).

    Article  CAS  Google Scholar 

  5. R. Zhou and J. Xue, ChemPhysChem, 13, No. 10, 2471-2480 (2012).

    Article  CAS  Google Scholar 

  6. G. Li, R. Zhu, and Y. Yang, Nat. Photon., 6, 153-161 (2012).

    Article  CAS  Google Scholar 

  7. H. Liu, V. Avrutin, N. Izyumskaya, et al., Superlat. Microstruct., 48, No. 5, 458-484 (2010).

    Article  CAS  Google Scholar 

  8. S. Kirchmeyer and K. Reuter, J. Mater. Chem., 15, 2077-2088 (2005).

    CAS  Google Scholar 

  9. L. Groenendaal, F. Jonas, D. Freitag, et al., Adv. Mater., 12, No. 7, 481-494 (2000).

    Article  CAS  Google Scholar 

  10. O. L Gribkova, A. A. Nekrasov, M. Trchova, et al., Polymer, 52, No. 12, 2474-2484 (2011).

    Article  CAS  Google Scholar 

  11. O. L. Gribkova, A. A. Nekrasov, V. F. Ivanov, et al., Synth. Met., 180, 64-72 (2013).

    Article  CAS  Google Scholar 

  12. S. Pang, Y. Hernandez, X. Feng, and K. Müllen, Adv. Mater., 23, No. 25, 2779-2795 (2011).

    Article  CAS  Google Scholar 

  13. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Polymer, 52, No. 1, 5-25 (2011).

    Article  CAS  Google Scholar 

  14. R. S. Edwards and K. S. Coleman, Nanoscale, 5, 38-51 (2013).

    Article  CAS  Google Scholar 

  15. O. Yu. Posudievsky, O. A. Khazieieva, V. V. Cherepanov, et al., J. Nanopart. Res., 15, No. 11, 2046-2053 (2013).

    Article  Google Scholar 

  16. D. Chen, H. Feng, and J. Li, Chem. Rev., 112, No. 11, 6027-6053 (2012).

    Article  CAS  Google Scholar 

  17. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228-240 (2010).

    Article  CAS  Google Scholar 

  18. G. Eda and M. Chhowalla, Adv. Mat., 22, No. 22, 2392-2415 (2010).

    Article  CAS  Google Scholar 

  19. D. Zhang, X. Zhang, Y. Chen, et al., Electrochim. Acta, 69, No. 1, 364-370 (2012).

    Article  CAS  Google Scholar 

  20. S. Stankovich, D. A. Dikin, R. D. Piner, et al., Carbon, 45, No. 7, 1558-1565 (2007).

    Article  CAS  Google Scholar 

  21. O. Yu. Posudievsky, O. A. Khazieieva, V. G. Koshechko, and V. D. Pokhodenko, J. Mater. Chem., 22, No. 25, 12465-12467 (2012).

    Article  CAS  Google Scholar 

  22. O. Yu. Posudievsky, O. A. Khazieieva, V. G. Koshechko, and V. D. Pokhodenko, Abstracts of the Fourth International Conference on Nanosized Systems: Structure, Properties, Technology [in Ukrainian], November 19-22, 2013, Kyiv, Ukraine (2013), p. 49.

    Google Scholar 

  23. S. Stafstrom, J. L. Bredas, A. J. Epstein, et al., Phys. Rev. Lett., 59, No. 13, 1464-1467 (1987).

    Article  CAS  Google Scholar 

  24. D. M. Tigelaar, W. Lee, K. A. Bates, et al., Chem. Mater., 14, No. 3, 1430-1438 (2002).

    Article  CAS  Google Scholar 

  25. J. Luo, S. Jiang, Y. Wu, et al., J. Polym. Sci. A, 50, No. 23, 4888-4894 (2012).

    Article  CAS  Google Scholar 

Download references

This work was supported by the State Target Science and Technology Program “Development and application of energy saving diode light sources and lighting systems” (Project 1.2.4.2) and the Program of Joint Ukrainian–Russian Research Projects of the National Academy of Sciences of Ukraine and Russian Basic Research Fund (Projects 23-03-12(U) and 12-03-90435-Ukr_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Posudievsky.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 50, No. 2, pp. 94-100, March-April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posudievsky, O.Y., Lypenko, D.A., Khazieieva, O.A. et al. Nanocomposite of Polyaniline with Partially Oxidized Graphene as the Transport Layer of Light-Emitting Polymer Diodes. Theor Exp Chem 50, 96–102 (2014). https://doi.org/10.1007/s11237-014-9352-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-014-9352-z

Key words

Navigation