Skip to main content
Log in

Catalytic Properties of Nanosized Cu/ZrO2 Systems in the Steam Reforming of Bioethanol

  • Published:
Theoretical and Experimental Chemistry Aims and scope

A size effect was found in the low-temperature steam reforming of bioethanol (15 vol. % ethanol in water) on copper catalysts supported on yttrium-stabilized zirconia: the specific rate of the conversion of ethanol into the key reforming product, acetaldehyde, is virtually independent on the mean diameter of the copper particles in the range 6-10 nm but drops significantly for particles with diameter 1-2 nm. Hypotheses for this observed effect are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The samples were provided by T. E. Konstantinova of the Donetsk Institute for Physics and Engineering named after O. O. Galkin, National Academy of Sciences of Ukraine.

References

  1. M. Ni, D. Y. C. Leung, and M. K. H. Leung, Int. J. Hydrogen Energy, 32, 3238-3247 (2007).

    Article  CAS  Google Scholar 

  2. P. D. Vaidya and A. E. Rodrigues, Chem. Eng. J., 117, 39-49 (2006).

    Article  CAS  Google Scholar 

  3. A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, Energy Fuels, 19, 2098-2106 (2005).

    Article  CAS  Google Scholar 

  4. K. T. Jung and A. T. Bell, Catal. Lett., 80, 63-68 (2002).

    Article  CAS  Google Scholar 

  5. R.-X. Zhou, X.-Y. Jiang, J.-X. Mao, and X.-M. Zheng, Appl. Catal. A, 162, 213-222 (1997).

    Article  CAS  Google Scholar 

  6. M. Benito, R. Padilla, L. Rodriguez, et al., J. Power Sources, 169, 167-176 (2007).

    Article  CAS  Google Scholar 

  7. A. G. Sato, D. P. Volanti, D. M. Meira, et al., J. Catal., 307, 1-17 (2013).

    Article  CAS  Google Scholar 

  8. V. P. Pakharukova, E. M. Moroz, V. V. Kriventsov, et al., J. Phys. Chem. C, 113, 21368-21375 (2009).

    Article  CAS  Google Scholar 

  9. L. Yu. Dolgikh, Yu. I. Pyatnitskii, S. I. Reshetnikov, et al., Teor. Éksp. Khim., 47, No. 5, 309-314 (2011). [Theor. Exp. Chem., 47, No. 5, 324-330 (2011) (English translation).]

    Article  CAS  Google Scholar 

  10. Z. Liu, M. Amiridis, and Y. Chen, J. Phys. Chem. B, 109, 1251-1255 (2005).

    Article  CAS  Google Scholar 

  11. W. P. Dow, Y.-P. Wang, and T.-J. Huang, J. Catal., 160, 155-170 (1996).

    Article  CAS  Google Scholar 

  12. Z.-Y. Ma, C. Yang, W. Wei, et al., J. Mol. Catal. A, 231, 75-81 (2005).

    Article  CAS  Google Scholar 

  13. K. I. Patrylak, L. K. Patrylak, and S. V. Konovalov, Teor. Éksp. Khim., 49, No. 1, 32-36 (2013). [Theor. Exp. Chem., 49, No. 1, 35-39 (2013) (English translation).]

    Article  CAS  Google Scholar 

  14. Y. Zhao, W. Li, M. Zhang, and K. Tao, Catal. Commun., 3, 239-245 (2002).

    Article  CAS  Google Scholar 

  15. J. D. A. Bellido and E. M. Assaf, J. Power Sources, 177, 24-32 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Dolgykh.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 50, No. 1, pp. 46-52, January-February, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deinega, I.V., Dolgykh, L.Y., Staraya, L.A. et al. Catalytic Properties of Nanosized Cu/ZrO2 Systems in the Steam Reforming of Bioethanol. Theor Exp Chem 50, 46–52 (2014). https://doi.org/10.1007/s11237-014-9347-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-014-9347-9

Key words

Navigation