Skip to main content
Log in

Photochemical reduction of graphene oxide in colloidal solution

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Stable aqueous colloidal solutions of graphene oxide stabilized with sodium polyphosphate were obtained. During irradiation of the colloids the oxygen-containing groups of the graphene oxide are eliminated, and the aromatic graphite-like regions in its composition are expanded. This is accompanied by decrease in the energy of the electronic transitions Ebg in such sp2-hybridized fragments. Photoreduction of the colloidal particles of graphene oxide leads to changes in their hydrodynamic size, resulting from 𝜋𝜋 interactions between the aromatic fragments in the particles. It was shown that the Ebg value can be varied purposefully in the range of 0.5-1.9 eV by varying the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nature Mater., 6, No. 3, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. F. Bonaccorso, Z. Sun, and T. Hasan, A. C. Ferrari, Nature Photon., 4, No. 9, 611–622 (2010).

    Article  CAS  Google Scholar 

  3. M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev., 110, No. 1, 132–145 (2010).

    Article  CAS  Google Scholar 

  4. H. Chang, Z. Sun, Q. Yuan, et al., Adv. Mater., 22, No. 43, 4872–4876 (2010).

    Article  CAS  Google Scholar 

  5. D. R. Dreyer, R. S. Ruoff, and C. W. Bielawski, Angew. Chem. Int. Ed., 49, No, 49, 9336–9344 (2010).

    Article  CAS  Google Scholar 

  6. G. Eda and M. Chowalla, Adv. Mater., 22, No. 22, 2392–2415 (2010).

    Article  CAS  Google Scholar 

  7. Y. Hernandez, Y. Nicolosi, M. Lotya, et al., Nature Nanotechnol., 3, No. 9, 563–568 (2008).

    Article  CAS  Google Scholar 

  8. S. J. Aravind, V. Eswaraiah, and S. Ramaprabhu, J. Mater. Chem., 21, No. 43, 17094–17097 (2011).

    Article  CAS  Google Scholar 

  9. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, No. 1, 228–240 (2010).

    Article  CAS  Google Scholar 

  10. S. Park and R. S. Ruoff, Nature Nanotechnol., 4, No. 4, 217–224 (2009).

    Article  CAS  Google Scholar 

  11. C. Botas, P. Alvarez, C. Blanco, et al., Carbon, 50, No. 1, 275–282 (2012).

    Article  CAS  Google Scholar 

  12. H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Mater. Solar Cells, 93, No. 9, 1461–1470 (2009).

    Article  CAS  Google Scholar 

  13. X. An and J. C. Yu, RSC Adv., 1, No. 8, 1426–1434 (2011).

    Article  CAS  Google Scholar 

  14. Y. M. Shulga, V. M. Martynenko, V. E. Muradyan, et al., Chem. Phys. Lett., 498, Nos. 4-6, 287–291 (2010).

    Article  CAS  Google Scholar 

  15. L. J. Cote, R. Cruz-Silva, and J. Huang, J. Am. Chem. Soc., 131, No. 31, 11027-11032 (2009).

    Article  CAS  Google Scholar 

  16. V. A. Smirnov, A. A. Arbuzov, Yu. M. Shul’ga, et al., Khim. Vysok. Énerg., 45, No. 1, 60–64 (2011).

    Google Scholar 

  17. Y. Matsumoto, M. Morita, S. Y. Kim, et al., Chem. Lett., 39, No. 7, 750–751 (2010).

    Article  CAS  Google Scholar 

  18. V. Abdelsayed, S. Moussa, H. M. Hassan, et al., J. Phys. Chem. Lett., 1, No. 19, 2804–2809 (2010).

    Article  CAS  Google Scholar 

  19. H.-B. Yao, L.-H. Wu, C.-H. Cui, et al., J. Mater. Chem., 20, No. 25, 5190–5195 (2010).

    Article  CAS  Google Scholar 

  20. S. Moussa, G. Atkinson, M. Samy El-Shall, et al., J. Mater. Chem., 21, No. 26, 9608–9619 (2011).

    Article  CAS  Google Scholar 

  21. L. Guardia, S. Villar-Rodil, J. I. Paredes, et al., Carbon, 50, No. 3, 1014–1024 (2012).

    Article  CAS  Google Scholar 

  22. G. Williams, B. Seger, and P. V. Kamat, ACS Nano, 2, No. 7, 1487–1491 (2008).

    Article  CAS  Google Scholar 

  23. O. Akhavan, M. Abdolahad, A. Esfandiar, and M. Mohatashamifar, J. Phys. Chem. C, 114, No. 30, 12955–12959 (2010).

    Article  CAS  Google Scholar 

  24. G. Williams and P. V. Kamat, Langmuir, 25, No. 24, 13869–13873 (2009).

    Article  CAS  Google Scholar 

  25. H. Li, S. Pang, X. Feng, et al., Chem. Commun., 46, Nos. 3/4, 6243–6245 (2010).

    Article  CAS  Google Scholar 

  26. T. Szabo, A. Szeri, and I. Dekany, Carbon, 43, No. 1, 87–94 (2005).

    Article  CAS  Google Scholar 

  27. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, et al., ACS Nano, 4, No. 8, 4806–4814 (2010).

    Article  CAS  Google Scholar 

  28. K. A. Mkhoyan, A. W. Contryman, J. Silcox, et al., Nano Lett., 9, No. 3, 1058–1063 (2009).

    Article  CAS  Google Scholar 

  29. A. Pulido, P. Concepcion, M. Boronat, et al., J. Mater. Chem., 22, No. 1, 51–56 (2012).

    Article  CAS  Google Scholar 

  30. T. V. Cuong, V. H. Pham, Q. T. Tran, et al., Mater. Lett., 64, No. 3, 399–401 (2010).

    Article  CAS  Google Scholar 

  31. G. Eda, Y.-Y. Lin, C. Mattevi, et al., Adv. Mater, 22, No. 4, 505–509 (2010).

    Article  CAS  Google Scholar 

  32. K. Erickson, R. Erni, Z. Lee, et al., Adv. Mater, No. 40, 4467-4472 (2010).

  33. C. Gomez-Navarro, J. C. Meyer, R. S. Sundaram, et al., Nano Lett., 10, No. 4, 1144-1148 (2010).

    Article  CAS  Google Scholar 

  34. Z.-B. Liu, X. Zhao, X.-L. Zhang, et al., J. Phys. Chem. Lett., 2, No. 4, 1972-1977 (2011).

    Article  CAS  Google Scholar 

  35. L. J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New York (1958).

    Google Scholar 

  36. D. W. Lee, L. V. De Los Santos, J. W. Seo, et al., J. Phys. Chem. B, 114, No. 17, 5723-5728 (2010).

    Article  CAS  Google Scholar 

  37. M. Jin, T. H. Kim, S. C. Lim, et al., Adv. Funct. Mater., 21, No. 18, 3496–3501 (2011).

    Article  CAS  Google Scholar 

  38. V. G. Plotnikov, V. A. Smirnov, M. V. Alfimov, and Yu. M. Shul’ga, Khim. Vysok. Énerg., 45, No. 5, 445-449 (2011).

    Google Scholar 

  39. S. Mikhailov (ed.), Physics and Applications of Graphene – Theory, InTech, ISBN 978-953-307-152-7.

  40. M. Acik, C. Mattevi, C. Gong, et al., ACS Nano, 4, No. 10, 5861-5868 (2010).

    Article  CAS  Google Scholar 

  41. K. I. Zamarev (ed.), Photocatalytic Conversion of Solar Energy [in Russian], Nauka, Novosibirsk (1985), Vol. 2.

  42. W. Chen, L. Yan, and P. R. Bangal, J. Phys. Chem. C, 114, No. 47, 19885-19890 (2010).

    Article  CAS  Google Scholar 

Download references

The work was carried out within the scope of the targeted complex program of fundamental investigations of the National Academy of Sciences of Ukraine “Fundamental problems of nanostructured systems, nanomaterials, nanotechnologies” with support from the State Fund for Fundamental Research of Ukraine (project No. F41.2/005). The authors are grateful to O. S. Litvin and V. N. Dzhagan (V. E. Lashkaryov Institute of Semiconductor Physics) for assistance in the production of the data from atomic-force microscopy and Raman spectroscopy respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Stroyuk.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 48, No. 1, pp. 1-11, January-February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroyuk, A.L., Andryushina, N.S., Shcherban’, N.D. et al. Photochemical reduction of graphene oxide in colloidal solution. Theor Exp Chem 48, 2–13 (2012). https://doi.org/10.1007/s11237-012-9235-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-012-9235-0

Key words

Navigation