Skip to main content
Log in

Quantum Size Effects in Semiconductor Photocatalysis

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

The characteristics of photocatalytic systems based on nanostructural semiconductors, characterized by quantum size effects, are discussed. An analysis is made of the consequences of exciton quantum confinement in the volume that are significant for photocatalysis and, in particular, the increase in the energy of photogenerated charges with decrease in the particle size, the photoinduced polarization processes, and also the simultaneous display of these effects. Possible ways of further increasing the effectiveness of systems based on nanostructural semiconductors are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Hagfeldt and M. Gratzel, Chem. Rev., 95, No. 1, 49–68 (1995).

    Article  Google Scholar 

  2. A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Teor. Eksp. Khim., 36, No. 2, 69–88 (2000).

    Google Scholar 

  3. A. Henglein, Ber. Bunsenges. Phys. Chem., 101, No. 11, 1562–1572 (1997).

    Google Scholar 

  4. R. F. Khairutdinov, Usp. Khim., 67, No. 2, 125–139 (1998).

    Google Scholar 

  5. D. Beydoun, R. Amal, G. Low, and S. McEvoy, J. Nanoparticle Res., 1, No. 4, 439–458 (1999).

    Article  Google Scholar 

  6. Y. Wang and N. Herron, J. Phys. Chem., 95, No. 2, 525–532 (1991).

    Article  Google Scholar 

  7. A. S. Arico, P. Bruce, B. Scrosati, et al., Nature Mater., 4, No. 5, 366–377 (2005).

    Article  Google Scholar 

  8. A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Teor. Eksp. Khim., 30, No. 4, 175–191 (1994).

    Google Scholar 

  9. M. Gratzel (ed.), Energy Resources through the Prism of Photochemistry and Catalysis [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  10. K. Jortner and C. Rao, Pure Appl. Chem., 74, No. 9, 1491–1506 (2002).

    Google Scholar 

  11. A. L. Stroyuk, A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Teor. Eksp. Khim., 41, No. 2, 67–87 (2005).

    Google Scholar 

  12. J.-M. Hermann, Top. Catal., 34, Nos. 1–4, 49–65 (2005).

    Article  Google Scholar 

  13. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, University press, Cambridge (1998).

    Google Scholar 

  14. A. J. Nozik and R. Memming, J. Phys. Chem., 100, No. 31, 13061–13078 (1996).

    Article  Google Scholar 

  15. J. Chrysochoos, J. Phys. Chem., 96, No. 7, 2868–2873 (1992).

    Article  Google Scholar 

  16. D. M. Adams, P. V. Kamat, R. A. Marcus, et al., J. Phys. Chem. B, 107, No. 28, 6668–6697 (2003).

    Article  Google Scholar 

  17. M. Kanemoto, T. Shiragami, C. Pac, and S. Yanagida, J. Phys. Chem., 96, No. 8, 3521–3526 (1992).

    Article  Google Scholar 

  18. B. C. Faust, M. R. Hoffmann, and D. W. Bahnemann, J. Phys. Chem., 93, No. 17, 6371–6381 (1989).

    Article  Google Scholar 

  19. B. D. Summ and N. I. Ivanova, Usp. Khim., 69, No. 11, 995–1008 (2000).

    Google Scholar 

  20. W. Xing, Z. Shu, Z. Jin, et al., J. Chem. Soc., Faraday Trans., 93, No. 23, 4187–4195 (1997).

    Google Scholar 

  21. H. D. Jang, S.-K. Kim, and S.-J. Kim, J. Nanoparticle Res., 3, Nos. 1/2, 141–147 (2001).

    Article  Google Scholar 

  22. T. Albaret, F. Finocchi, and C. Noguera, Faraday Discuss., 114, No. 5, 285–304 (1999).

    Article  Google Scholar 

  23. N. Serpone, D. Lawless, R. Khairutdinov, and E. Pelizzetti, J. Phys. Chem., 99, No. 45, 16655–16661 (1995).

    Article  Google Scholar 

  24. D. V. Bavykin, E. N. Savinov, and V. N. Parmon, Izv. Akad. Nauk, Ser. Khim., No. 4, 651–658 (1998).

  25. J. M. Nedeljkovic, M. T. Nenadovic, O. I. Micic, and A. J. Nozik, J. Phys. Chem., 90, No. 1, 12–13 (1986).

    Article  Google Scholar 

  26. J. P. Wilcoxon, T. R. Thurston, and J. E. Martin, Nanostruct. Mater., 12, No. 12, 993–997 (1999).

    Article  Google Scholar 

  27. J. P. Wilcoxon, J. Phys. Chem. B, 104, No. 31, 7334–7343 (2000).

    Article  Google Scholar 

  28. S. Yanagida, T. Ogata, A. Shindo, et al., Bull. Chem. Soc. Jpn., 68, No. 3, 752–758 (1995).

    Google Scholar 

  29. M. Kanemoto, H. Hosokawa, Y. Wada, et al., J. Chem. Soc., Faraday Trans., 92, No. 13, 2401–2411 (1996).

    Google Scholar 

  30. A. L. Stroyuk, V. M. Granchak, and S. Ya. Kuchmii, Teor. Eksp. Khim., 37, No. 3, 170–175 (2001).

    Google Scholar 

  31. A. L. Stroyuk, V. M. Granchak, A. V. Korzhak, and S. Y. Kuchmii, J. Photochem. Photobiol. A, 162, No. 4, 339–351 (2004).

    Article  Google Scholar 

  32. T. Shiragami, H. Ankyu, S. Fykami, et al., J. Chem. Soc., Faraday Trans., 88, No. 7, 1055–1061 (1992).

    Google Scholar 

  33. H. Matsumoto, H. Uchida, T. Matsunaga, et al., J. Phys. Chem., 98, No. 44, 11549–11556 (1994).

    Article  Google Scholar 

  34. B.-A. Korgel and H.-G. Monbouquette, J. Phys. Chem. B, 101, No. 22, 5010–5017 (1997).

    Article  Google Scholar 

  35. G. Ramakrishna and H. N. Ghosh, Langmuir, 19, No. 7, 3006–3012 (2003).

    Article  Google Scholar 

  36. S. K. Haram, B. M. Quinn, and A. J. Bard, J. Am. Chem. Soc., 123, No. 36, 8860–8861 (2001).

    Article  PubMed  Google Scholar 

  37. H. Weiβ, A. Fernandez, and H. Kisch, Angew. Chem., 113, No. 20, 3942–3945 (2001).

    Article  Google Scholar 

  38. D. J. Riley, J. P. Waggett, and K. G. Wijayantha, J. Mater. Chem., 14, No. 4, 704–708 (2004).

    Article  Google Scholar 

  39. D. V. Bavykin, E. N. Savinov, and V. N. Parmon, J. Photochem. Photobiol. A, 130, No. 1, 57–61 (2000).

    Article  Google Scholar 

  40. M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa, J. Phys. Chem., 91, No. 16, 4305–4310 (1987).

    Article  Google Scholar 

  41. S. Nath, S. K. Ghosh, S. Panigahi, et al., Langmuir, 20, No. 18, 7880–7883 (2004).

    Article  PubMed  Google Scholar 

  42. Q. Zhang and L. Gao, Langmuir, 20, No. 22, 9821–9827 (2004).

    Article  PubMed  Google Scholar 

  43. A. L. Stroyuk, A. V. Korzhak, A. E. Raevskaya, and S. Ya. Kuchmii, Teor. Eksp. Khim., 40, No. 1, 1–6 (2004).

    Google Scholar 

  44. A. E. Raevskaya, A. V. Korzhak, A. L. Stroyuk, and S. Ya. Kuchmii, Teor. Eksp. Khim., 41, No. 2, 105–109 (2005).

    Google Scholar 

  45. A. M. Roy and G. C. De, J. Photochem. Photobiol. A, 157, No. 1, 87–92 (2003).

    Article  Google Scholar 

  46. J. W. Albery, J. Chem. Soc., Faraday Trans. I, 81, No. 11, 1999–2007 (1985).

    Google Scholar 

  47. E. N. Savinov, V. E. Nagornyi, and V. N. Parmon, Khim. Fiz., 12, No. 10, 56–65 (1994).

    Google Scholar 

  48. C. Liu and A. J. Bard, J. Phys. Chem., 93, No. 8, 3232–3237 (1989).

    Article  Google Scholar 

  49. A. Wood, M. Giersig, and P. Mulvaney, J. Phys. Chem. B, 105, No. 37, 8810–8815 (2001).

    Article  Google Scholar 

  50. P. V. Kamat, N. M. Dimitrijevic, and A. J. Nozik, J. Phys. Chem., 93, No. 8, 2873–2875 (1989).

    Article  Google Scholar 

  51. N. Liver and A. Nitzan, J. Phys. Chem., 96, No. 8, 3366–3373 (1992).

    Article  Google Scholar 

  52. A. L. Stroyuk, M. I. Bodnarchuk, M. V. Kovalenko, and S. Ya. Kuchmii, Teor. Eksp. Khim., 40, No. 5, 279–284 (2004).

    Google Scholar 

  53. A. L. Stroyuk, V. V. Shvalagin, and S. Y. Kuchmii, J. Photochem. Photobiol. A, 173, No. 2, 185–194 (2005).

    Article  Google Scholar 

  54. A. Henglein, J. Phys. Chem., 97, No. 21, 5457–5471 (1993).

    Article  Google Scholar 

  55. P. Hoyer and H. Weller, J. Phys. Chem., 99, No. 38, 14096–14100 (1995).

    Article  Google Scholar 

  56. V. V. Shvalagin, A. L. Stroyuk, and S. Ya. Kuchmii, Teor. Eksp. Khim., 40, No. 6, 363–367 (2004).

    Google Scholar 

  57. A. L. Stroyuk, V. V. Shvalagin, A. E. Raevskaya, et al., Teor. Eksp. Khim., 39, No. 6, 331–336 (2003).

    Google Scholar 

  58. M. Haase, H. Weller, and A. Henglein, J. Phys. Chem., 92, No. 16, 4706–4712 (1988).

    Article  Google Scholar 

  59. L. Spanhel, H. Weller, and A. Henglein, J. Am. Chem. Soc., 109, No. 22, 6632–6635 (1987).

    Article  Google Scholar 

  60. J. L. Blackburn, D. C. Selmarten, and A. J. Nozik, J. Phys. Chem. B, 107, No. 51, 14154–14157 (2003).

    Article  Google Scholar 

  61. J. E. Evans, K. W. Springer, and J. Z. Zhang, J. Chem. Phys., 101, No. 7, 6222–6225 (1994).

    Article  Google Scholar 

  62. E. Hao, B. Yang, J. Zhang, et al., J. Mater. Chem. Commun., 8, No. 6, 1327–1328 (1998).

    Article  Google Scholar 

  63. H. Yin, Y. Wada, T. Kitamura, et al., Chem. Lett., No. 11, 334–335 (2001).

  64. J. C. Yu, L. Wu, J. Lin, et al., Chem. Commun., No. 17, 1552–1553 (2003).

  65. D. Lawless, S. Kapoor, and D. Meisel, J. Phys. Chem., 99, No. 25, 10329–10335 (1995).

    Article  Google Scholar 

  66. Y. Bessekhouad, D. Robert, and J. V. Weber, J. Photochem. Photobiol. A, 163, No. 3, 569–580 (2004).

    Article  Google Scholar 

  67. A. Kumar and A. K. Jain, J. Photochem. Photobiol. A, 156, Nos. 1–3, 207–218 (2003).

    Article  Google Scholar 

  68. W. So, K. Kim, and S. Moon, Int. J. Hydrogen Energy, 29, No. 3, 229–234 (2004).

    Article  Google Scholar 

  69. P. A. Sant and P. V. Kamat, Phys. Chem. Chem. Phys., 4, No. 2, 198–203 (2002).

    Article  Google Scholar 

  70. T. Hirao, K. Suzuki, and I. Komasawa, J. Colloid Interface Sci., 244, No. 3, 262–265 (2001).

    Article  Google Scholar 

  71. R. S. Mane, S. J. Roh, O. S. Joo, et al., Electrochim. Acta, 50, No. 12, 2453–2459 (2005).

    Article  Google Scholar 

  72. N. F. Guba, S. Ya. Kuchmii, A. V. Korzhak, et al., Teor. Eksp. Khim., 35, No. 2. 79–82 (1999).

    Google Scholar 

  73. A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Teor. Eksp. Khim., 33, No. 5, 306–321 (1997).

    Google Scholar 

  74. I. M. Kobasa and G. P. Tarasenko, Teor. Eksp. Khim., 38, No. 4, 249–252 (2002).

    Google Scholar 

  75. I. M. Kobasa and G. P. Tarasenko, Teor. Eksp. Khim., 39, No. 2, 107–110 (2003).

    Google Scholar 

  76. S. Hotchandani and P. V. Kamat, J. Phys. Chem., 96, No. 16, 6834–6839 (1992).

    Article  Google Scholar 

  77. K. R. Gopidas, M. Bohorquez, and P. V. Kamat, J. Phys. Chem., 94, No. 16, 6435–6440 (1990).

    Article  Google Scholar 

  78. S. Sakthivel, S. U. Geissen, D. W. Bahnemann, et al., J. Photochem. Photobiol. A, 148, Nos. 1–3, 283–293 (2002).

    Article  Google Scholar 

  79. R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem., 98, No. 12, 3183–3188 (1994).

    Article  Google Scholar 

  80. T. Gao, Q. Li, and T. Wang, Chem. Mater., 17, No. 4, 887–892 (2005).

    Article  Google Scholar 

  81. H. Weller, U. Koch, M. Gutierrez, and A. Henglein, Ber. Bunsenges. Phys. Chem., 88, No. 7, 649–656 (1984).

    Google Scholar 

  82. C. Wang, X. Wang, B. Xu, et al., J. Photochem. Photobiol. A, 168, No. 1, 47–52 (2004).

    Article  Google Scholar 

  83. S. Ito, Y. Makari, T. Kitamura, et al., J. Mater. Chem., 14, No. 3, 385–390 (2004).

    Article  Google Scholar 

  84. X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, J. Photochem. Photobiol. A, 141, Nos. 2/3, 209–217 (2001).

    Article  Google Scholar 

  85. D. Li and H. Haneda, J. Photochem. Photobiol. A, 160, No. 3, 203–212 (2003).

    Article  Google Scholar 

  86. Y. Lu, M. Yuan, Y. Liu, et al., Langmuir, 21, No. 9, 4071–4076 (2005).

    Article  PubMed  Google Scholar 

  87. S. Pavasupree, Y. Suzuki, S. Pivsa-Art, and S. Yoshikawa, J. Solid State Chem., 178, No. 2, 128–134 (2005).

    Article  Google Scholar 

  88. A. K. Sinha and K. Suzuki, J. Phys. Chem. B, 109, No. 5, 1708–1714 (2005).

    Article  Google Scholar 

  89. J. Katayama, K. Ito, M. Matsuoka, and J. Tamaki, J. Appl. Electrochem., 34, No. 7, 687–692 (2004).

    Article  Google Scholar 

  90. J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, et al., J. Phys. Chem. B, 109, No. 7, 2625–2631 (2005).

    Article  Google Scholar 

  91. L. Spanhel, A. Henglein, and H. Weller, Ber. Bunsenges. Phys. Chem., 91, 1359 (1987).

    Google Scholar 

  92. W. Ho, J. C. Yu, J. Lin, et al., Langmuir, 20, No. 14, 5865–5869 (2004).

    Article  Google Scholar 

  93. K. Rajeshwar, N. R. Tacconi, and C. R. Chenthamarakshan, Chem. Mater., 13, No. 9, 2765–2782 (2001).

    Article  Google Scholar 

  94. D. Shchukin, S. Poznyak, A. Kulak, and P. Pichat, J. Photochem. Photobiol. A, 162, Nos. 1/2, 423–430 (2004).

    Article  Google Scholar 

  95. T. Kida, G. Guan, Y. Minami, et al., J. Mater. Chem., 13, No. 5, 1186–1191 (2003).

    Article  Google Scholar 

  96. Z. Yuan and L. Zhang, J. Mater. Chem., 11, No. 23, 1265–1268 (2001).

    Article  Google Scholar 

  97. A. S. Deshpande, D. G. Shchukin, E. Ustinovich, et al., Adv. Fund. Mater., 15, No. 2, 239–245 (2005).

    Article  Google Scholar 

  98. J. S. Hong, D. S. Choi, M. G. Kang, et al., J. Photochem. Photobiol. A, 143, Nos. 1/2, 87–92 (2001).

    Article  Google Scholar 

  99. A. I. Kryukov, N. P. Smirnova, A. V. Korzhak, et al., Teor. Eksp. Khim., 34, No. 6, 360–365 (1998).

    Google Scholar 

  100. P. A. van Hal, M. P. Christiaans, M. M. Wienk, et al., J. Phys. Chem. B, 103, No. 21, 4352–4359 (1999).

    Google Scholar 

  101. S. H. Yang, T. P. Nguyen, L. Rendu, and C. S. Hsu, Thin Solid Films, 471, Nos. 1/2, 230–235 (2005).

    Article  Google Scholar 

  102. K. Takahashi, K. Seto, T. Yamaguchi, et al., Chem. Lett., 33, No. 8, 1042–1043 (2004).

    Article  Google Scholar 

  103. W. J. E. Beek, M. M. Wienk, M. Kemerink, et al., J. Phys. Chem. B, 109, No. 19, 9505–9516 (2005).

    Article  Google Scholar 

  104. D. S. Ginger and N. C. Greenham, Phys. Rev. B, 59, No. 16, 10622–10629 (1999).

    Article  Google Scholar 

  105. S. Roux, G. Soler-Illia, S. Demoustier-Champagne, et al., Adv. Mater., 15, No. 3, 217–218 (2003).

    Article  Google Scholar 

  106. D. Chowdhury, A. Paul, and A. Chattopadhyay, Langmuir, 21, No. 9, 4123–4128 (2005).

    Article  PubMed  Google Scholar 

  107. X. Li, G. Wang, X. Li, and D. Lu, Appl. Surface Sci., 229, Nos. 1–4, 395–401 (2004).

    Article  Google Scholar 

  108. X. Sui, Y. Chu, S. Xing, et al., Colloids Surfaces A, 251, Nos. 1–3, 103–107 (2004).

    Article  Google Scholar 

  109. X. Lu, Y. Yu, L. Chen, et al., Chem. Commun., No. 13, 1522–1523 (2004).

  110. D. Y. Godovsky, A. E. Varfolomeev, D. F. Zaretsky, et al., J. Mater. Chem., 11, No. 23, 2465–2469 (2001).

    Article  Google Scholar 

  111. R. Senadeera, N. Fukuri, Y. Saito, et al., Chem. Commun., No. 17, 2259–2261 (2005).

  112. A. Watanabe and A. Kasuya, Thin Solid Films, 483, Nos. 1/2, 358–366 (2005).

    Article  Google Scholar 

  113. A. Li and L. Li, J. Phys. Chem. B, 108, No. 34, 12842–12850 (2004).

    Article  Google Scholar 

  114. V. Ya. Gurevich and Yu. V. Pleskov, Photoelectrochemistry of Semiconductors [in Russian], Nauka, Moscow (1965).

  115. Yu. V. Pleskov, Photoelectrochemical Conversion of Solar Energy [in Russian], Khimiya, Moscow (1990).

    Google Scholar 

  116. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95, No. 3, 735–758 (1995).

    Article  Google Scholar 

  117. V. Subramanian, E. Wolf, and P. V. Kamat, J. Phys. Chem. B, 105, No. 46, 11439–11446 (2001).

    Article  Google Scholar 

  118. N. Chandrasekharan and P. V. Kamat, J. Phys. Chem. B, 104, No. 46, 10851–10857 (2000).

    Article  Google Scholar 

  119. A. Fernandez, A. Caballero, A. R. Gonzalez-Elipe, et al., J. Phys. Chem., 99, No. 10, 3303–3309 (1995).

    Article  Google Scholar 

  120. A. Dawson and P. V. Kamat, J. Phys. Chem. B, 105, No. 5, 960–966 (2001).

    Article  Google Scholar 

  121. P. V. Kamat, M. Flumiani, and A. Dawson, Colloids Surfaces A, 202, Nos. 1/2, 269–279 (2002).

    Article  Google Scholar 

  122. V. Subramanian, E. E. Wolf, and P. V. Kamat, Langmuir, 19, No. 2, 469–474 (2003).

    Article  Google Scholar 

  123. P. V. Kamat and D. Meisel, Curr. Opinion Colloid Interface Sci., 7, No. 5, 282–287 (2002).

    Article  Google Scholar 

  124. A. Yamakata, T. Ishibashi, and H. Onishi, J. Photochem. Photobiol. A, 160, Nos. 1/2, 33–36 (2003).

    Article  Google Scholar 

  125. T. Hirakawa and P. V. Kamat, J. Am. Chem. Soc., 127, No. 11, 3928–3934 (2005).

    Article  PubMed  Google Scholar 

  126. H. Einaga and M. Harada, Langmuir, 21, No. 6, 2578–2584 (2005).

    Article  PubMed  Google Scholar 

  127. Z. Goren, I. Willner, A. J. Nelson, and A. J. Frank, J. Phys. Chem., 94, No. 9, 3784–3790 (1990).

    Article  Google Scholar 

  128. H. Sung, J. Choi, H. Hah, et al., J. Photochem. Photobiol. A, 163, Nos. 1/2, 37–44 (2004).

    Article  Google Scholar 

  129. B. Xin, L. Jing, Z. Ren, et al., J. Phys. Chem. B, 109, No. 7, 2805–2809 (2005).

    Article  Google Scholar 

  130. A. Ozkan, M. Ozkan, R. Gurkan, et al., J. Photochem. Photobiol. A, 163, Nos. 1/2, 29–35 (2004).

    Article  Google Scholar 

  131. E. Szabo-Bardos, H. Czili, and A. Horvath, J. Photochem. Photobiol. A, 154, Nos. 2/3, 195–201 (2003).

    Article  Google Scholar 

  132. M. Kaneko, N. Gokan, N. Katakura, et al., Chem. Commun., No. 12, 1625–1627 (2005).

  133. L. Chen, F. Tsai, and C. Huang, J. Photochem. and Photobiol. A, 170, No. 1, 7–14 (2005).

    Article  Google Scholar 

  134. M. Andersson, H. Birkedal, N. R. Franklin, et al., Chem. Mater., 17, No. 6, 1409–1415 (2005).

    Article  Google Scholar 

  135. P. V. Kamat and B. Shanghavi, J. Phys. Chem. B, 101, No. 39, 7675–7679 (1997).

    Article  Google Scholar 

  136. V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Phys. Chem. B, 107, No. 30, 7479–7485 (2003).

    Article  Google Scholar 

  137. Y. Hida and H. Kozuka, Thin Solid Films, 476, No. 2, 264–271 (2005).

    Article  Google Scholar 

  138. N. Zeug, J. Bucheler, and H. Kisch, J. Am. Chem. Soc., 107, No. 6, 1459–1465 (1985).

    Article  Google Scholar 

  139. A. Kudo and M. Sekizawa, Chem. Commun., No. 13, 1371–1372 (2000).

  140. A. Kudo and M. Sekizawa, Catal. Lett., 58, No. 4, 241–243 (1999).

    Article  Google Scholar 

  141. I. Tsuji and A. Kudo, J. Photochem. Photobiol. A, 156, Nos. 1–3, 249–252 (2003).

    Article  Google Scholar 

  142. R. Rafaeloff, Y.-M. Tricot, F. Nome, and J. H. Fendler, J. Phys. Chem., 89, No. 3, 533–537 (1985).

    Article  Google Scholar 

  143. A. L. Stroyuk, A. V. Korzhak, A. E. Raevskaya, et al., Nanosyst., Nanomater., Nanotekhnol., 1, No. 1, 571–596 (2003).

    Google Scholar 

  144. A. V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, et al., Nanosyst., Nanomater., Nanotekhnol., 2, No. 3, 863–874 (2004).

    Google Scholar 

  145. A. V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, et al., Teor. Eksp. Khim., 41, No. 1, 24–29 (2005).

    Google Scholar 

  146. V. V. Shvalagin, A. L. Stroyuk, and S. Ya. Kuchmii, Teor. Eksp. Khim., 40, No. 3, 145–149 (2004).

    Google Scholar 

  147. V. V. Shvalagin, A. L. Stroyuk, and S. Ya. Kuchmii, Nanosyst., Nanomater., Nanotekhnol., 2, No. 3, 833–839 (2004).

    Google Scholar 

  148. G. Ya. Kolbasov and A. V. Gorodskii, Photostimulated Charge Transfer in Semiconductor-Electrolyte System [in Russian], Naukova Dumka, Kiev (1993).

    Google Scholar 

  149. M. Gratzel, J. Photochem. Photobiol. C, 4, No. 3, 145–153 (2003).

    Article  Google Scholar 

  150. K. Fujihara, T. Ohio, and M. Matsumura, J. Chem. Soc., Faraday Trans., 94, No. 22, 3705–3709 (1998).

    Google Scholar 

  151. K. T. Ranjit and B. Viswanathan, J. Photochem. Photobiol. A, 154, Nos. 2/3, 299–302 (2003).

    Article  Google Scholar 

  152. T. An, G. Li, Y. Xiong, et al., Mater. Phys. Mech., 4, Nos. 1/2, 101–106 (2001).

    Google Scholar 

  153. M. V. B. Zanoni, J. J. Sene, and M. A. Anderson, J. Photochem. Photobiol. A, 157, Nos. 1/2, 55–63 (2003).

    Article  Google Scholar 

  154. Z. Zainal, C. Y. Lee, M. Z. Hussein, et al., J. Photochem. Photobiol. A, 172, No. 3, 316–321 (2005).

    Article  Google Scholar 

  155. H. Hidaka, K. Ajisaka, S. Horikoshi, et al., J. Photochem. Photobiol. A, 138, No. 2, 185–192 (2001).

    Article  Google Scholar 

  156. S. Horikoshi, Y. Satou, H. Hidaka, and N. Serpone, J. Photochem. Photobiol. A, 146, Nos. 1/2, 109–119 (2001).

    Article  Google Scholar 

  157. J. A. Byrne, A. Davidson, P. S. Dunlop, and B. R. Eggins, J. Photochem. Photobiol. A, 148, Nos. 1–3, 365–374 (2002).

    Article  Google Scholar 

  158. J. Krysa and J. Jirkovsky, J. Appl. Electrochem., 32, No. 9, 591–596 (2002).

    Article  Google Scholar 

  159. H. Hidaka, K. Ajisaka, S. Horikoshi, et al., Catal. Lett., 60, 95–98 (1999).

    Article  Google Scholar 

  160. G. K. Mor, K. Shankar, M. Paulose, et al., Nano Lett., 5, No. 1, 191–195.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 4, pp. 199–218, July–August, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroyuk, A.L., Kryukov, A.I., Kuchmii, S.Y. et al. Quantum Size Effects in Semiconductor Photocatalysis. Theor Exp Chem 41, 207–228 (2005). https://doi.org/10.1007/s11237-005-0042-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-005-0042-8

Key words

Navigation