Skip to main content
Log in

Dynamical modelling and cost optimization of a 5G base station for energy conservation using feedback retrial queue with sleeping strategy

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Dense network deployment is now being evaluated as one of the viable solutions to meet the capacity and connectivity requirements of the fifth-generation (5G) cellular system. The goal of 5G cellular networks is to offer clients with faster download speeds, lower latency, more dependability, broader network capacities, more accessibility, and a seamless client experience. However, one of the many obstacles that will need to be overcome in the 5G era is the issue of energy usage. For energy efficiency in 5G cellular networks, researchers have been studying at the sleeping strategy of base stations. In this regard, this study models a 5G BS as an \(M^{[X]}/G/1\) feedback retrial queue with a sleeping strategy to reduce average power consumption and conserve power in 5G mobile networks. The probability-generating functions and steady-state probabilities for various BS states were computed employing the supplementary variable approach. In addition, an extensive palette of performance metrics have been determined. Then, with the aid of graphs and tables, the resulting metrics are conceptualized and verified. Further, this research is accelerated in order to bring about the best possible (optimal) cost for the system by adopting a range of optimization approaches namely particle swarm optimization, artificial bee colony and genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Arqub, O. A., & Al-Smadi, M. (2020). Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Computing, 24(16), 12501–12522. https://doi.org/10.1007/s00500-020-04687-0

    Article  Google Scholar 

  2. Ayyappan, G., & Nirmala, M. (2020). An \(M^{[X]}/G (a, b)/1\) queue with unreliable server, second optional service, closedown, setup with N-policy and multiple vacation. International Journal of Operational Research, 16(1), 53–81. https://doi.org/10.1504/IJMOR.2020.104686

    Article  Google Scholar 

  3. Ayyappan, G., & Nirmala, M. (2021). Analysis of customer’s impatience on bulk service queueing system with unreliable server, setup time and two types of multiple vacations. International Journal of Industrial and Systems Engineering, 38(2), 198–222. https://doi.org/10.1504/IJISE.2021.115321

    Article  Google Scholar 

  4. Bremermann, H. J. (1985). The evolution of intelligence: the nervous system as a model of its environment. Seattle: Department of Mathematics: University of Washington.

    Google Scholar 

  5. Chih-Lin, I., Han, S., & Bian, S. (2020). Energy-efficient 5G for a greener future. Nature Electronics, 3(4), 182–184. https://doi.org/10.1038/s41928-020-0404-1

    Article  Google Scholar 

  6. CK, D. M., & Haridass, M. (2023). Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station. The Scientific Temper, 14(02), 375–382. https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.21

    Article  Google Scholar 

  7. Ck, D. M., Selvamuthu, D., & Kalita, P. (2023). Energy Efficiency in a Base Station of 5G Cellular Networks using \(M/G/1\) Queue with Multiple Sleeps and N-Policy. Methodology and Computing in Applied Probability, 25(2), 48. https://doi.org/10.1007/s11009-023-10026-1

    Article  Google Scholar 

  8. Deepa, V., & Haridass, M. (2023). Simulation Analysis of a Base Station Using Finite Buffer M/G/1 Queueing System with Variant Sleeps. Methodology and Computing in Applied Probability, 25(4), 80. https://doi.org/10.1007/s11009-023-10052-z

    Article  Google Scholar 

  9. Deepa, V., Haridass, M., Selvamuthu, D., & Kalita, P. (2023). Analysis of energy efficiency of small cell base station in 4G/5G networks. Telecommunication Systems, 82(3), 381–401. https://doi.org/10.1007/s11235-022-00987-y

    Article  Google Scholar 

  10. Falin, G. I., & Templeton, J. G. C. (1997). Retrial queues. London: Chapman & Hall.

    Book  Google Scholar 

  11. Holland, J. H. (1975). Adaptation in natural and artificial systems (pp. 390–401). Ann Arbor: University of Michigan Press.

    Google Scholar 

  12. Haridass, M., & Arumuganathan, R. (2015). Analysis of a single server batch arrival retrial queueing system with modified vacations and N-policy. RAIRO-Operations Research, 49(2), 279–296. https://doi.org/10.1051/ro/2014037

    Article  Google Scholar 

  13. Hawasli, M., & Çolak, S. A. (2017). Toward green 5G heterogeneous small-cell networks: power optimization using load balancing technique. AEU-International Journal of Electronics and Communications, 82, 474–485. https://doi.org/10.1016/j.aeue.2017.09.012

    Article  Google Scholar 

  14. Holtkamp, H., Auer, G., Bazzi, S., & Haas, H. (2014). Minimizing base station power consumption. IEEE Journal on Selected Areas in Communications, 32(2), 297–306. https://doi.org/10.1109/JSAC.2014.141210

    Article  Google Scholar 

  15. Jain, M., & Bhargava, C. (2008). Bulk arrival retrial queue with unreliable server and priority subscribers. International Journal of Operations Research, 5(4), 242–259.

    Google Scholar 

  16. Jain, M., & Upadhyaya, S. (2012). Optimal repairable \(M^{[X]}/G/1\) queue with Bernoulli feedback and setup. International Journal of Mathematics in Operational Research, 4(6), 679–702. https://doi.org/10.1051/ro/2020074

    Article  Google Scholar 

  17. Jain, M., & Kaur, S. (2021). Bernoulli vacation model for \(M^{[X]}/G/1\) unreliable server retrial queue with bernoulli feedback, balking and optional service. RAIRO-Operations Research, 55, S2027–S2053. https://doi.org/10.1051/ro/2020074

    Article  Google Scholar 

  18. Jain, M., & Kumar, A. (2022). Unreliable Server \(M^{[X]}/G/1\) Retrial Feedback Queue with Balking, Working Vacation and Vacation Interruption. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 93(1), 57–73. https://doi.org/10.1007/s40010-022-00777-w

    Article  Google Scholar 

  19. Kalita, P., & Selvamuthu, D. (2023). Stochastic modelling of sleeping strategy in 5G base station for energy efficiency. Telecommunication Systems, 83(2), 115–133. https://doi.org/10.1007/s11235-023-01001-9

    Article  Google Scholar 

  20. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  Google Scholar 

  21. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization, Proceedings of ICNN’95. International Conference on Neural Networks, Perth, WA, Australia, 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968.

  22. Krishna Reddy, G. V., Nadarajan, R., & Arumuganathan, R. (1998). Analysis of a bulk queue with N-policy multiple vacations and setup times. Computers & Operations Research, 25(11), 957–967. https://doi.org/10.1016/S0305-0548(97)00098-1

    Article  Google Scholar 

  23. Kumar, A., & Jain, M. (2023). Cost Optimization of an Unreliable server queue with two stage service process under hybrid vacation policy. Mathematics and Computers in Simulation, 204, 259–281. https://doi.org/10.1016/j.matcom.2022.08.007

    Article  Google Scholar 

  24. Liu, C., Natarajan, B., & Xia, H. (2015). Small cell base station sleep strategies for energy efficiency. IEEE Transactions on Vehicular Technology, 65(3), 1652–1661. https://doi.org/10.1109/TVT.2015.2413382

    Article  Google Scholar 

  25. López-Pérez, D., Domenico, A.D., Piovesan, N., Baohongqiang, H., Xinli, G., Bao, H., Qitao, S., & Debbah, M. (2022). A survey on 5G energy efficiency: massive MIMO, lean carrier design, sleep modes, and machine learning. arXiv preprint, arXiv:2101.11246.

  26. Malik, G., Upadhyaya, S., & Sharma, R. (2012). Cost inspection of a \(Geo/G/1\) retrial model using particle swarm optimization and Genetic algorithm. Ain Shams Engineering Journal, 12(2), 2241–2254. https://doi.org/10.1016/j.asej.2020.11.012

    Article  Google Scholar 

  27. Ma, Z., Guo, S., & Wang, R. (2023). The virtual machines scheduling strategy based on M/M/c queueing model with vacation. Future Generation Computer Systems, 138, 43–51. https://doi.org/10.1016/j.future.2022.08.001

    Article  Google Scholar 

  28. Niu, Z., Guo, X., Zhou, S., & Kumar, P. R. (2015). Characterizing energy-delay tradeoff in hyper-cellular networks with base station sleeping control. IEEE Journal on Selected Areas in Communications, 33(4), 641–650. https://doi.org/10.1109/JSAC.2015.2393494

    Article  Google Scholar 

  29. Pakes, A. G. (1969). Some conditions for Ergodicity and recurrence of Markov chains. Operations Research, 17, 1058–1061. https://doi.org/10.1287/opre.17.6.1058

    Article  Google Scholar 

  30. Salahdine, F., Opadere, J., Liu, Q., Han, T., Zhang, N., & Wu, S. (2021). A survey on sleep mode techniques for ultra-dense networks in 5G and beyond. Computer Networks, 201, 108567. https://doi.org/10.1016/j.comnet.2021.108567

    Article  Google Scholar 

  31. Sennott, L. I., Humblet, P. A., & Tweedi, R. L. (1983). Average drifts and the non-Ergodicity of Markov chains. Operations Research, 31, 783–789. https://doi.org/10.1287/opre.31.4.783

    Article  Google Scholar 

  32. Shortle, J. F., Thompson, J. M., Gross, D., & Harris, C. M. (2018). Fundamentals of queueing theory (p. 399). John Wiley & Sons.

    Book  Google Scholar 

  33. Upadhyaya, S. (2020). Cost optimization of a discrete-time retrial queue with Bernoulli feedback and starting failure. International Journal of Industrial and Systems Engineering, 36, 165–196. https://doi.org/10.1504/IJISE.2020.110245

    Article  Google Scholar 

  34. Vaishnawi, M., Upadhyaya, S., & Kulshrestha, R. (2022). Optimal Cost Analysis for Discrete-Time Recurrent Queue with Bernoulli Feedback and Emergency Vacation. International Journal of Applied and Computational Mathematics, 8(5), 254. https://doi.org/10.1007/s40819-022-01445-8

  35. Woon, L. J., Ramasamy, G., & Thiagarajah, S. P. (2021). Peak power shaving in hybrid power supplied 5G base station. Bulletin of Electrical Engineering and Informatics, 10(1), 62–69. https://doi.org/10.11591/eei.v10i1.2705

    Article  Google Scholar 

  36. Yang, J., Zhang, X., & Wang, W. (2016). Two-stage base station sleeping scheme for green cellular networks. Journal of Communications and Networks, 18(4), 600–609. https://doi.org/10.1109/JCN.2016.000083

    Article  Google Scholar 

  37. Zebari, G. M., Zebari, D. A., & Al-zebari, A. (2021). Fundamentals of 5G cellular networks: A review. Journal of Information Technology and Informatics, 1(1), 1–5.

    Google Scholar 

  38. Zhang, H., Liu, H., Cheng, J., & Leung, V. C. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, 66(4), 1705–1716. https://doi.org/10.1109/TCOMM.2017.2763623

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors made substantial contributions to the conception and design of the model. Conception, drafting the manuscript, revision and proofreading was done by K. Indhira. Designing, analysis and interpretation of the model was carried out by R. Harini. All authors read and approved the final manuscript

Corresponding author

Correspondence to K. Indhira.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In the case where \(\rho < 1\), the embedded Markov chain (MC) \(\{F_n;n\in N\}\) can be said to be ergodic, where \(\rho = {\mathcal {E}}(X_1)[1-{\mathcal {Q}}^*(\nu )]+r-\nu {\mathcal {E}}(X_1)[1+\eta {\mathcal {E}}(S^1)]{\mathcal {E}}(L^1) \)

Proof

It is straightforward to verify that ergodicity is a sufficient condition by applying Foster’s criteria [29], which points out that the chain might be irreducible and aperiodic. If a non-negative fn. c(d),  \(d\in N\) and \(\epsilon >0,\) exists that guarantees that the mean drift \(\varsigma _d=H[c(f_ {n+1})-c(f_n)/f_n=d]\) is limited for all \(d\in N\) and \(d\in N\) and \(\varsigma _d \le -\epsilon \), excluding possibly for a finite no. of \(d'\)s, then the MC is ergodic. When considering the function \(c(d)=d\) in our scenario, we get

$$\begin{aligned} \varsigma _d= {\left\{ \begin{array}{ll} r-\nu {\mathcal {E}}(X_1)[1+\eta {\mathcal {E}}(S^1)]{\mathcal {E}}(L^1), ~~\text {if }c=0 \\ {\mathcal {E}}(X_1)[1-{\mathcal {Q}}^*(\nu )]+r-\nu {\mathcal {E}}(X_1)[1+\eta {\mathcal {E}}(S^1)]\\ \quad {\mathcal {E}}(L^1)-1, ~~~~\text {if }c=1,2,\dots \\ \end{array}\right. } \end{aligned}$$

It is clear that ergodicity must exist in order for the inequality below to exist.

$$\begin{aligned} {\mathcal {E}}(X_1)[1-{\mathcal {Q}}^*(\nu )]+r-\nu {\mathcal {E}}(X_1)[1+\eta {\mathcal {E}}(S^1)]{\mathcal {E}}(L^1) <1 \end{aligned}$$

If the MC \(\{F_ n;n\epsilon N\}\) meets Kaplan’s criterion, we may easily ensure non-ergodicity in accordance with Sennott et al. [31] particularly \(\varsigma _d<\infty \) for all \(d\ge 0\) and \(\exists \) \(d_0\in N\) s.t \(\varsigma _d \ge 0\) for \(d\ge d_ 0\). The fact that “Kaplan’s condition”is met in our scenario is underscored by the existence of a w such that \(g_{ld}= 0\) for \(d<l-m\) and \(l>0\), in which \(g_{ld}\) is the one-step transition matrix of \(\{F_n;n\in N\}\). Consequently, it is indicated that the MC is non-ergodic by

$$\begin{aligned} {\mathcal {E}}(X_1)[1-{\mathcal {Q}}^*(\nu )]+r-\nu {\mathcal {E}}(X_1)[1+\eta {\mathcal {E}}(S^1)]{\mathcal {E}}(L^1) \ge 1 \end{aligned}$$

\(\square \)

Appendix B

By substituting the eqns. (35), (36) and (33) in (26) and performing some calculations, we eventually arrive at,

(57)

Here, by substituting the eqns. (35) to (39) into the eqns. (27) to (31), we get,

(58)
(59)
(60)
(61)
(62)

Appendix C

$$\begin{aligned} Nr_q^{'''}(1)&=-6 \nu {\mathcal {E}}(X_1)(1+s{\mathcal {E}}(S^1))[r+{\mathcal {E}}(X_1)(1-{\mathcal {Q}}^*(\nu ))\\&\quad -\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1)){\mathcal {E}}(L^1)\\&\quad -1] [M^{'}-\nu {\mathcal {E}}(X_1)+\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[\nu {\mathcal {E}}(X_1)(1+s){\mathcal {E}}(B^1)\\&\quad +\nu s{\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]]\\&\quad -9M^{'} \nu {\mathcal {E}}(X_1)(1+s{\mathcal {E}}(S^1))\nu {\mathcal {E}}(X_1)(1-{\mathcal {Q}}^*(\nu ))\\&\quad +2\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1)){\mathcal {E}}(L^1)[-\nu {\mathcal {E}}(X_1)\\&\quad +\eta {\mathcal {E}}(X_1){\mathcal {E}}(S^1)]]-9[2{\mathcal {E}}(X_1)+U^{'}(1+s)\\&\quad +\frac{(1+s)}{{\mathcal {G}}_{1,0}^*(\nu )}-\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[\nu {\mathcal {E}}(X_1) (1+s){\mathcal {E}}(B^1)\\&\quad +\nu s{\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]][2(1-{\mathcal {Q}}^*(\nu )) \nu {\mathcal {E}}(X_1)(1\\&\quad +s{\mathcal {E}}(S^1))\nu {\mathcal {E}}(X_1)+\nu [2{\mathcal {E}}(X_1)(1\\&\quad +s{\mathcal {E}}(S^1))\nu {\mathcal {E}}(L^1)[-\nu {\mathcal {E}}(X_1)+\eta {\mathcal {E}}(X_1){\mathcal {E}}(S^1)]]]\\ Nr_q^{''''}(1)&=-6[(\nu {\mathcal {E}}(X_1))^2(1+s{\mathcal {E}}(S^1))][(1-{\mathcal {Q}}^*(\nu ))[M^{''}\\&\quad -4M^{'}+4r[2{\mathcal {E}}(X_1)+U^{'} (1+s)+\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}(1+s)\\&\quad -\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[\nu (1+s){\mathcal {E}}(X_1){\mathcal {E}}(B^1)\\&\quad +\nu s {\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]]] -12[2{\mathcal {E}}(X_2)\\&\quad +2{\mathcal {E}}(X_1)+U^{''}(1+s) -2[\nu (1+s){\mathcal {E}}(X_1){\mathcal {E}}(B^1)\\&\quad +\nu s {\mathcal {E}}(X_1) {\mathcal {E}}(G_2^1)][U^{'}+\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}]+2U^{'}(1+s)\\&\quad -\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[(1+s){\mathcal {B}}^{*''}(1)+s{\mathcal {G}}_2^{*''}(1)]\\&\quad +2\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}\nu (1+s){\mathcal {E}}(X_1){\mathcal {E}}(B^1)\nu s {\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]] \\&\quad -12\nu [M^{'}+[2{\mathcal {E}}(X_1)+U^{'} (1+s) +\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}(1+s)\\&\quad -\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[\nu (1+s){\mathcal {E}}(X_1){\mathcal {E}}(B^1) +\nu s {\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]]]\\ \end{aligned}$$
$$\begin{aligned}&\quad [(1-{\mathcal {Q}}^*(\nu )){\mathcal {E}}(X_1){\mathcal {T}}^{''}(1)\\&\quad +{\mathcal {L}}^{*''}(1)[-\nu {\mathcal {E}}(X_1)+\eta \nu {\mathcal {E}}(X_1){\mathcal {E}}(S^1)]]\\&\quad -12[M^{'} +\nu [2{\mathcal {E}}(X_1)+U^{'}(1+s)(U^{'} +\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )})\\&\quad -\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[\nu (1+s){\mathcal {E}}(X_1){\mathcal {E}}(B^1)\\&\quad +\nu s {\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]]]\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1))({\mathcal {E}}(L^1)\\&\quad +(1-{\mathcal {Q}}^*(\nu ))\nu {\mathcal {E}}(X_2))\\&\quad -12\nu {\mathcal {E}}(X_1) (1+\eta {\mathcal {E}}(S^1)){\mathcal {E}}(L^1)[[-\nu {\mathcal {E}}(X_1)\\&\quad +\eta \nu {\mathcal {E}}(X_1){\mathcal {E}}(S^1)][\nu [2{\mathcal {E}}(X_2)\\&\quad +2{\mathcal {E}}(X_1)+U^{''} (1+s)-2[\nu (1+s){\mathcal {E}}(X_1){\mathcal {E}}(B^1)\\&\quad +\nu s {\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)][U^{'} +\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}]\\&\quad +2U^{'}(1+s) -\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[(1+s){\mathcal {B}}^{*''}(1) +s{\mathcal {G}}_2^{*''}(1)]\\&\quad +2\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}\nu (1+s){\mathcal {E}}(X_1){\mathcal {E}}(B^1)\nu s \\&\quad {\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]\\&\quad +(1-{\mathcal {Q}}^*(\nu ))[M^{''}\nu -12M^{'}\nu {\mathcal {E}}(X_1)]]\\&\quad +12(1-{\mathcal {Q}}^*(\nu ))(1+\eta {\mathcal {E}}(S^1))({\mathcal {E}}(X_1))^2[2{\mathcal {E}}(X_1)\\&\quad +[U^{'}+\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}](1+s)\\&\quad -\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[\nu (1+s){\mathcal {E}}(X_1) {\mathcal {E}}(B^1) +\nu s{\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]]]\\&\quad -12[r+{\mathcal {E}}(X_1)(1-{\mathcal {Q}}^*(\nu ))\\&\quad -\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1)) {\mathcal {E}}(L^1)-1][ -\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1))][M^{''}\\&\quad -\nu {\mathcal {E}}(X_2)+\nu [2U^{'}[\nu (1+s){\mathcal {E}}(X_1){\mathcal {E}}(B^1) +\nu s {\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]\\&\quad +\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[(1+s){\mathcal {B}}^{*''}(1)\\&\quad +s {\mathcal {S}}^{*''}(1)]]]+12[M^{'} -\nu {\mathcal {E}}(X_1)\\ \end{aligned}$$
$$\begin{aligned}&\quad +\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[\nu (1+s){\mathcal {E}}(X_1){\mathcal {E}}(B^1)\\&\quad +\nu s {\mathcal {E}}(X_1){\mathcal {E}}(G_2^1)]][{\mathcal {T}}^{''}(1)(r-1)\\&\quad +\nu {\mathcal {E}}(X_1) (1+\eta {\mathcal {E}}(S^1))[(1-{\mathcal {Q}}^*(\nu )){\mathcal {E}}(X_2) +{\mathcal {L}}^{*''}(1)]\\&\quad -\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1)){\mathcal {E}}(L^1)[{\mathcal {T}}^{''}(1)\\&\quad -2\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1))[r+(1-{\mathcal {Q}}^*(\nu )){\mathcal {E}}(X_1)]]\\&\quad +(1-{\mathcal {Q}}^*(\nu )){\mathcal {E}}(X_1)[2r\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1))\\&\quad +{\mathcal {T}}^{''}(1)]]\\ Dr_q^{'''}(1)&=6\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1))\nu {\mathcal {E}}(X_1)[r+{\mathcal {E}}(X_1)(1\\&\quad -{\mathcal {Q}}^*(\nu ))-\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1))\\&{\mathcal {E}}(L^1)-1]\\ Dr_q^{''''}(1)&= 12[[r+{\mathcal {E}}(X_1)(1-{\mathcal {Q}}^*(\nu ))\\&\quad -\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1)){\mathcal {E}}(L^1)-1][{\mathcal {T}}^{''}(1){\mathcal {E}}(X_1)\\&\quad +{\mathcal {E}}(X_2)\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1))]\\&\quad +\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1)){\mathcal {E}}(X_1)[2[r{\mathcal {E}}(X_1) (1-{\mathcal {Q}}^*(\nu ))\\&\quad -\nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1)){\mathcal {E}}(L^1)[r\\&\quad +{\mathcal {E}}(X_1)(1-{\mathcal {Q}}^*(\nu ))]]\\&\quad +{\mathcal {E}}(X_2) (1-{\mathcal {Q}}^*(\nu )) -{\mathcal {T}}^{''}(1)]]\\ Nr_s^{''''}(1)&= Nr_q^{''''}(1)-6 \nu {\mathcal {E}}(X_1)(1+\eta {\mathcal {E}}(S^1)){\mathcal {E}}(L^1)[\nu {\mathcal {E}}(X_1)\\&\quad +\nu {\mathcal {E}}(X_1)\eta {\mathcal {E}}(S^1)][1-4M^{'}] +24M^{'}(\nu {\mathcal {E}}(X_1))^2(1\\&\quad +\eta {\mathcal {E}}(S^1))(1-{\mathcal {Q}}^*(\nu ))\\ {\mathcal {T}}^{''}(1)&= \nu {\mathcal {E}}(X_2)(1+\eta {\mathcal {E}}(S^1)) +(\nu {\mathcal {E}}(X_1))^2\eta {\mathcal {E}}(S^2)\\ {\mathcal {L}}^{*''}(1)&= \nu ({\mathcal {E}}(X_2){\mathcal {E}}(L^1) +{\mathcal {E}}(X_1){\mathcal {E}}(L^2));~ {\mathcal {B}}^{*''}(1) \\&= \nu ({\mathcal {E}}(X_2){\mathcal {E}}(B^1) +{\mathcal {E}}(X_1){\mathcal {E}}(B^2)) \\ {\mathcal {S}}^{*''}(1)&= \nu ({\mathcal {E}}(X_2){\mathcal {E}}(S^1)+{\mathcal {E}}(X_1){\mathcal {E}}(S^2)); ~ {\mathcal {G}}_2^{*''}(1) \\&= \nu ({\mathcal {E}}(X_2){\mathcal {E}}(G_2^1) +{\mathcal {E}}(X_1){\mathcal {E}}(G_2^2)) \\ U^{''}&=\frac{(\nu )^2}{{\mathcal {G}}_{1,0}^*(\nu )}[{\mathcal {E}}(G_{1,0}^2)\\&\quad +2\sum _{m=1}^{M}p_m{\mathcal {E}}(G_{1,m}^1){\mathcal {E}}(G_{1,0}^1) +\sum _{m=1}^{M}p_m{\mathcal {E}}(G_{1,m}^2)]\\ M^{''}&=\frac{\nu }{{\mathcal {G}}_{1,0}^*(\nu )}[{\mathcal {E}}(G_{1,0}^2) +2\sum _{m=1}^{M}p_m{\mathcal {E}}(G_{1,m}^1){\mathcal {E}}(G_{1,0}^1)\\&\quad +\sum _{m=1}^{M}p_m{\mathcal {E}}(G_{1,m}^2)] \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harini, R., Indhira, K. Dynamical modelling and cost optimization of a 5G base station for energy conservation using feedback retrial queue with sleeping strategy. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01155-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01155-0

Keywords

Mathematics Subject Classification

Navigation