Skip to main content
Log in

6G for intelligent transportation systems: standards, technologies, and challenges

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The advent of the sixth-generation (6G) wireless communication technology brings forth immense opportunities for enhancing Intelligent Transportation Systems (ITS). We investigate the potential of 6G in revolutionizing transportation systems by analyzing the standards, technologies, and challenges associated with its implementation. Building upon the advancements of 5G, 6G introduces unprecedented capabilities, including ultra-high data rates, ultra-low latency, massive connectivity, and intelligent network orchestration. Leveraging these capabilities, 6G can facilitate seamless connectivity among vehicles, infrastructure, and pedestrians, enabling novel applications such as autonomous driving, smart traffic management, and cooperative collision avoidance. However, realizing the full potential of 6G for ITS entails addressing several challenges, including spectrum allocation, network security, resource management, and interoperability with existing infrastructures. We present a comprehensive overview of the latest developments in 6G standards and technologies, including mmWave communications, terahertz spectrum, visible light communication, Artificial Intelligence, and edge computing, emphasizing their relevance to ITS. We also describe these technologies in the context of ITS. Furthermore, we explore the potential benefits and impacts of 6G on transportation systems, highlighting the opportunities for improved safety, efficiency, and sustainability. Finally, we conclude by discussing the key challenges and research directions that must be addressed to effectively deploy 6G for ITS, thereby paving the way for the next generation of intelligent and connected transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Hassan, B., Baig, S., & Asif, M. (2021). Key technologies for ultra-reliable and low-latency communication in 6G. IEEE Communications Standards Magazine, 5(2), 106–113. https://doi.org/10.1109/MCOMSTD.001.2000052

    Article  Google Scholar 

  2. Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society, 1, 957–975. https://doi.org/10.1109/OJCOMS.2020.3010270

    Article  Google Scholar 

  3. Akyildiz, I. F., Nie, S., Lin, S.-C., & Chandrasekaran, M. (2016). 5G roadmap: 10 key enabling technologies. Computer Networks, 106, 17–48. https://doi.org/10.1016/j.comnet.2016.06.010

    Article  Google Scholar 

  4. Saad, W., Bennis, M., & Chen, M. (2020). A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142. https://doi.org/10.1109/MNET.001.1900287

    Article  Google Scholar 

  5. Lv, Z., Qiao, L., & You, I. (2021). 6G-Enabled Network in Box for Internet of Connected Vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(8), 5275–5282. https://doi.org/10.1109/TITS.2020.3034817

    Article  Google Scholar 

  6. https://www.ericsson.com/en/blog/2021/7/hexa-x-6g-technology-6g-use-cases Accessed on 8 Feb 2024.

  7. https://www.6gflagship.com/ Accessed on 8 Feb 2024.

  8. Rappaport, T. S., et al. (2019). Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access, 7, 78729–78757. https://doi.org/10.1109/ACCESS.2019.2921522

    Article  Google Scholar 

  9. Guerrero-Ibáñez, J., Zeadally, S., & Contreras-Castillo, J. (2018). Sensor technologies for intelligent transportation systems. Sensors, 18(4), 1212.

    Article  Google Scholar 

  10. Guerrero-ibanez, J. A., Zeadally, S., & Contreras-Castillo, J. (2015). Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies. IEEE Wireless Communications, 22(6), 122–128. https://doi.org/10.1109/MWC.2015.7368833

    Article  Google Scholar 

  11. Alam, M., Ferreira, J., & Fonseca, J. (2016). Introduction to intelligent transportation systems. Intelligent transportation systems: Dependable vehicular communications for improved road safety (pp. 1–17). Cham: Springer.

    Chapter  Google Scholar 

  12. Shaheen, S., & Finson, R. (2013). Intelligent transportation systems. Available at https://escholarship.org/uc/item/3hh2t4f9. Accessed on 3 Sept 2023

  13. Hussain, R., & Zeadally, S. (2018). Autonomous cars: Research results, issues, and future challenges. IEEE Communications Surveys & Tutorials, 21(2), 1275–1313. https://doi.org/10.1109/COMST.2018.2869360

    Article  Google Scholar 

  14. Dimitrakopoulos, G., & Demestichas, P. (2010). Intelligent transportation systems. IEEE Vehicular Technology Magazine, 5(1), 77–84. https://doi.org/10.1109/MVT.2009.935537

    Article  Google Scholar 

  15. Javed, M. A., Zeadally, S., & Hamida, E. B. (2019). Data analytics for cooperative intelligent transport systems. Vehicular communications, 15, 63–72. https://doi.org/10.1016/j.vehcom.2018.10.004

    Article  Google Scholar 

  16. Gohar, A., & Nencioni, G. (2021). The role of 5G technologies in a smart city: The case for intelligent transportation system. Sustainability, 13(9), 5188. https://doi.org/10.3390/su13095188

    Article  Google Scholar 

  17. Abou-Zeid, H., Pervez, F., Adinoyi, A., Aljlayl, M., & Yanikomeroglu, H. (2019). Cellular V2X transmission for connected and autonomous vehicles standardization, applications, and enabling technologies. IEEE Consumer Electronics Magazine, 8(6), 91–98.

    Article  Google Scholar 

  18. Noor-A-Rahim, M., et al. (2022). 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities. Proceedings of the IEEE, 110(6), 712–734. https://doi.org/10.1109/JPROC.2022.3173031

    Article  Google Scholar 

  19. Zahariadis, T., & Doshi, B. (2004). Applications and services for the B3G/4G era. IEEE Wireless Communications, 11(5), 3–5. https://doi.org/10.1109/MWC.2004.1351675

    Article  Google Scholar 

  20. Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J. J., & Lopez-Soler, J. M. (2020). A survey on 5G usage scenarios and traffic models. IEEE Communications Surveys & Tutorials, 22(2), 905–929. https://doi.org/10.1109/COMST.2020.2971781

    Article  Google Scholar 

  21. Kumar, R., Gupta, S. K., Wang, H.-C., Kumari, C. S., & Korlam, S. S. V. P. (2023). From Efficiency to sustainability: Exploring the potential of 6G for a greener future. Sustainability, 15, 16387. https://doi.org/10.3390/su152316387

    Article  Google Scholar 

  22. Serghiou, D., Khalily, M., Brown, T. W., & Tafazolli, R. (2022). Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: A survey, open challenges and future research directions. IEEE Communications Surveys & Tutorials, 24(4), 1957–1996. https://doi.org/10.1109/COMST.2022.3205505

    Article  Google Scholar 

  23. Pourkabirian, A., & Anisi, M. H. (2021). Robust data transmission rate allocation to improve energy efficiency in 6g networks. In 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain. pp. 1–6. https://doi.org/10.1109/GCWkshps52748.2021.9682158

  24. Shen, S., Yu, C., Zhang, K., Ni, J., & Ci, S. (2021). Adaptive and dynamic security in AI-empowered 6G: From an energy efficiency perspective. IEEE Communications Standards Magazine, 5(3), 80–88. https://doi.org/10.1109/MCOMSTD.101.2000090

    Article  Google Scholar 

  25. Al-Ansi, A., Al-Ansi, A. M., Muthanna, A., Elgendy, I. A., & Koucheryavy, A. (2021). Survey on intelligence edge computing in 6G: Characteristics, challenges, potential use cases, and market drivers. Future Internet, 13(5), 118. https://doi.org/10.3390/fi13050118

    Article  Google Scholar 

  26. Pajooh, H. H., Demidenko, S., Aslam, S., & Harris, M. (2022). Blockchain and 6G-enabled IoT. Inventions, 7(4), 109. https://doi.org/10.3390/inventions7040109

    Article  Google Scholar 

  27. Wang, C. X., You, X., Gao, X., Zhu, X., Li, Z., Zhang, C., Wang, H., Huang, Y., Chen, Y., Haas, H., & Thompson, J. S. (2023). On the road to 6G: Visions, requirements, key technologies and testbeds. IEEE Communications Surveys & Tutorials., 25(2), 905–974. https://doi.org/10.1109/COMST.2023.3249835

    Article  Google Scholar 

  28. Chafii, M., Bariah, L., Muhaidat, S., & Debbah, M. (2023). Twelve scientific challenges for 6G: Rethinking the foundations of communications theory. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/COMST.2023.3243918

    Article  Google Scholar 

  29. Patel, P., Narmawala, Z., & Thakkar, A. (2018). A survey on intelligent transportation system using internet of things. Emerging Research in Computing, Information, Communication and Applications: ERCICA, 1(2019), 231–240. https://doi.org/10.1007/978-981-13-5953-8_20

    Article  Google Scholar 

  30. Zhu, F., Li, Z., Chen, S., & Xiong, G. (2016). Parallel transportation management and control system and its applications in building smart cities. IEEE Transactions on Intelligent Transportation Systems, 17(6), 1576–1585. https://doi.org/10.1109/TITS.2015.2506156

    Article  Google Scholar 

  31. J1746_201910: ISP-vehicle location referencing standard, SAE International. Available at: https://www.sae.org/standards/content/j1746_201910 (Accessed30 Aug 2023)

  32. J2355_199710: Its Data Bus Architecture Reference Model Information Report, SAE International. Available at: https://www.sae.org/standards/content/j2355_199710/ (Accessed 30 Aug 2023).

  33. J2364_201506: Navigation and route guidance function accessibility while driving, SAE International. Available at: https://www.sae.org/standards/content/j2364_201506/ (Accessed 30 Aug 2023).

  34. J2366/7_200204: Its Data Bus - application message layer, SAE International. Available at: https://www.sae.org/standards/content/j2366/7_200204 (Accessed 30 Aug 2023).

  35. Program, T.I.S. Deployment Resources, ITS Standards Program|Fact Sheets|ITS Standards Fact Sheets. Available at: https://www.standards.its.dot.gov/Factsheets/Factsheet/17 (Accessed 30 August 2023).

  36. J2374_199907: Location referencing message specification, SAE International. Available at: https://www.sae.org/standards/content/j2374_199907/ (Accessed 30 Aug 2023).

  37. J1763_199507: A conceptual its architecture: An atis perspective, SAE International. Available at: https://www.sae.org/standards/content/j1763_199507/ (Accessed 30 Aug 2023).

  38. ANSI TS286: Commercial vehicle credentials. Available at: https://www.consystec.com/chile/web/chile/standards/stdflowcvo-ts286.htm (Accessed 30 Aug 2023).

  39. APTA TCIP-S-001 4.1.1 (2020) American Public Transportation Association. Available at: https://www.apta.com/research-technical-resources/standards/technology/apta-tcip-s-001-4-1-1/ (Accessed: 30 Aug 2023).

  40. ISO 21217:2020 (2020) ISO. Available at: https://www.iso.org/standard/80257.html (Accessed: 30 Aug 2023).

  41. Program, T.I.S. Deployment Resources, ITS Standards Program | Fact Sheets | ITS Standards Fact Sheets. Available at: https://www.standards.its.dot.gov/factsheets/factsheet/80 (Accessed 30 Aug 2023).

  42. EN 302 636–5–1 - V2.2.1 - intelligent transport systems (ITS. - ETSI. Available at: https://www.etsi.org/deliver/etsi_en/302600_302699/3026360501/02.02.01_60/en_3026360501v020201p.pdf (Accessed 30 Aug 2023).

  43. ISO 15628:2013 (2019) ISO. Available at: https://www.iso.org/standard/59288.html (Accessed 30 Aug 2023).

  44. CTI 4001 Institute of Transportation Engineers. Available at: https://www.ite.org/pub/?id=764FB228-0F6C-BA02-6D7B-16A86B1F8108 (Accessed 30 Aug 2023).

  45. Ali, I., & Li, F. (2020). An efficient conditional privacy-preserving authentication scheme for vehicle-to-infrastructure communication in VANETs. Vehicular Communications, 22, 100228. https://doi.org/10.1016/j.vehcom.2019.100228

    Article  Google Scholar 

  46. Appendix B: Its standards documents - NHTSA. Available at: https://www.nhtsa.gov/sites/nhtsa.gov/files/appendixb_its_standards.pdf (Accessed: 31 Aug 2023).

  47. Bhatia, V., Jaglan, V., Kumawat, S., Siwach, V., & Sehrawat, H. (2022). Intellıgent transportatıon system applıcatıons: A traffıc management perspectıve. Intelligent sustainable systems: Proceedings of ICISS 2021 (pp. 419–433). Singapore: Springer. https://doi.org/10.1007/978-981-16-2422-3_33

    Chapter  Google Scholar 

  48. Wang, P., Chen, C. M., Kumari, S., Shojafar, M., Tafazolli, R., & Liu, Y. N. (2020). HDMA: Hybrid D2D message authentication scheme for 5G-enabled VANETs. IEEE Transactions on Intelligent Transportation Systems, 22(8), 5071–5080. https://doi.org/10.1109/TITS.2020.3013928

    Article  Google Scholar 

  49. Jha, A. V., Appasani, B., Ghazali, A. N., Pattanayak, P., Gurjar, D. S., Kabalci, E., & Mohanta, D. K. (2021). Smart grid cyber-physical systems: Communication technologies, standards and challenges. Wireless Networks, 27(4), 2595–2613. https://doi.org/10.1007/s11276-021-02579-1

    Article  Google Scholar 

  50. Paiva, S., Ahad, M. A., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors, 21(6), 2143. https://doi.org/10.3390/s21062143

    Article  Google Scholar 

  51. Yu, H., Taleb, T., Samdanis, K., & Song, J. (2023). Towards Supporting holographic services over deterministic 6G integrated terrestrial & non-terrestrial networks. IEEE Network. https://doi.org/10.1109/MNET.133.2200509

    Article  Google Scholar 

  52. Giordani, M., & Zorzi, M. (2020). Non-terrestrial networks in the 6G era: Challenges and opportunities. IEEE Network, 35(2), 244–251. https://doi.org/10.1109/MNET.011.2000493

    Article  Google Scholar 

  53. Araniti, G., Iera, A., Pizzi, S., & Rinaldi, F. (2021). Toward 6G non-terrestrial networks. IEEE Network, 36(1), 113–120. https://doi.org/10.1109/MNET.011.2100191

    Article  Google Scholar 

  54. Jha, A. V., Mishra, S. K., Appasani, B., & Ghazali, A. N. (2021). Communication networks for metropolitan E-health applications. IEEE Potentials, 40(2), 34–42. https://doi.org/10.1109/MPOT.2020.3003128

    Article  Google Scholar 

  55. Yastrebova, A., Höyhtyä, M., Kirichek, R. and Serebryakova, A. (2019). Airborne-terrestrial integrated architecture for self-driving vehicles realization. In 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE. pp. 1–6

  56. Affan, A., Mumtaz, S., Asif, H. M., & Musavian, L. (2021). Performance analysis of orbital angular momentum (oam): A 6g waveform design. IEEE Communications Letters, 25(12), 3985–3989. https://doi.org/10.1109/LCOMM.2021.3115041

    Article  Google Scholar 

  57. Dilli, R., Ravi, Ch., & Jordhana, D. (2021). Ultra-massive multiple input multiple output technologies for 6G wireless networks. Engineered Science, 16, 308–318.

    Google Scholar 

  58. Mehic, M., Niemiec, M., Rass, S., Ma, J., Peev, M., Aguado, A., Martin, V., Schauer, S., Poppe, A., Pacher, C., & Voznak, M. (2020). Quantum key distribution: a networking perspective. ACM Computing Surveys (CSUR), 53(5), 1–41. https://doi.org/10.1145/3402192

    Article  Google Scholar 

  59. Chen, S., Liang, Y.-C., Sun, S., Kang, S., Cheng, W., & Peng, M. (2020). Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wireless Communications, 27(2), 218–228. https://doi.org/10.1109/MWC.001.1900333

    Article  Google Scholar 

  60. Kilanioti, I., Rizzo, G., Masini, B.M., Bazzi, A., Osorio, D.P., Linsalata, F., Magarini, M., Löschenbrand, D., Zemen, T. and Kliks, A. (2022). Intelligent transportation systems in the context of 5G-beyond and 6G networks. In 2022 IEEE conference on standards for communications and networking (CSCN). IEEE. pp. 82–88. https://doi.org/10.1109/CSCN57023.2022.10050942

  61. Huq, K. M. S., Otung, I. E., & Rodriguez, J. (2022). A study of coverage probability-based energy-efficiency analysis for UAV-aided THz-enabled 6G networks. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2022.3188653

    Article  Google Scholar 

  62. Munasinghe, G.K. and Murtaza, M. (2020). Analyzing vehicle-to-everything communication for intelligent transportation system: Journey from IEEE 802.11 p to 5G and finally towards 6G. In 2020 5th international conference on innovative technologies in intelligent systems and industrial applications (CITISIA). IEEE. pp. 1–7. https://doi.org/10.1109/CITISIA50690.2020.9371804

  63. Letaief, K. B., Chen, W., Shi, Y., Zhang, J., & Zhang, Y.-J.A. (2019). The roadmap to 6G: AI empowered wireless networks. IEEE Communications Magazine, 57(8), 84–90. https://doi.org/10.1109/MCOM.2019.1900271

    Article  Google Scholar 

  64. Goswami, P., Mukherjee, A., Hazra, R., Yang, L., Ghosh, U., Qi, Y., & Wang, H. (2021). AI based energy efficient routing protocol for intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 23(2), 1670–1679. https://doi.org/10.1109/TITS.2021.3107527

    Article  Google Scholar 

  65. Yuan, T., Da Rocha Neto, W., Rothenberg, C. E., Obraczka, K., Barakat, C., & Turletti, T. (2022). Machine learning for next-generation intelligent transportation systems: A survey. Transactions on emerging telecommunications technologies, 33(4), e4427. https://doi.org/10.1002/ett.4427

    Article  Google Scholar 

  66. Ribeiro, D. A., Melgarejo, D. C., Saadi, M., Rosa, R. L., & Rodríguez, D. Z. (2023). A novel deep deterministic policy gradient model applied to intelligent transportation system security problems in 5G and 6G network scenarios. Physical Communication, 56, 101938. https://doi.org/10.1016/j.phycom.2022.101938

    Article  Google Scholar 

  67. Veres, M., & Moussa, M. (2019). Deep learning for intelligent transportation systems: A survey of emerging trends. IEEE Transactions on Intelligent transportation systems, 21(8), 3152–3168. https://doi.org/10.1109/TITS.2019.2929020

    Article  Google Scholar 

  68. Kaffash, S., Nguyen, A. T., & Zhu, J. (2021). Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis. International journal of production economics, 231, 107868. https://doi.org/10.1016/j.ijpe.2020.107868

    Article  Google Scholar 

  69. Jabbar, R., Dhib, E., Said, A. B., Krichen, M., Fetais, N., Zaidan, E., & Barkaoui, K. (2022). Blockchain technology for intelligent transportation systems: A systematic literature review. IEEE Access, 10, 20995–21031. https://doi.org/10.1109/ACCESS.2022.3149958

    Article  Google Scholar 

  70. Mollah, M. B., Zhao, J., Niyato, D., Guan, Y. L., Yuen, C., Sun, S., Lam, K. Y., & Koh, L. H. (2020). Blockchain for the internet of vehicles towards intelligent transportation systems: A survey. IEEE Internet of Things Journal, 8(6), 4157–4185. https://doi.org/10.1109/JIOT.2020.3028368

    Article  Google Scholar 

  71. Cao, H., Garg, S., Kaddoum, G., Singh, S., & Hossain, M. S. (2022). Softwarized resource management and allocation with autonomous awareness for 6G-enabled cooperative intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 23(12), 24662–24671. https://doi.org/10.1109/TITS.2022.3209899

    Article  Google Scholar 

  72. How dangerous is the cyber attack risk to transportation? (2023) Security Intelligence. Available at: https://securityintelligence.com/articles/how-dangerous-cyber-attack-risk-transportation/ (Accessed 12 Nov 2023).

  73. Mishra, N., Islam, S. H., & Zeadally, S. (2024). A survey on security and cryptographic perspective of industrial-internet-of-things. Internet of Things, 25, 01037.

    Article  Google Scholar 

  74. Alsaedi, W. K., et al. (2023). Spectrum options and allocations for 6G: A regulatory and standardization review. IEEE Open Journal of the Communications Society, 4, 1787–1812. https://doi.org/10.1109/ojcoms.2023.3301630

    Article  Google Scholar 

  75. Rasheed, I., Hu, F., Hong, Y.-K., & Balasubramanian, B. (2021). Intelligent vehicle network routing with adaptive 3D beam alignment for mmWave 5G-based V2X communications. IEEE Transactions on Intelligent Transportation Systems, 22(5), 2706–2718. https://doi.org/10.1109/TITS.2020.2973859

    Article  Google Scholar 

  76. Lu, Y., & Zheng, X. (2020). 6G: A survey on technologies, scenarios, challenges, and the related issues. Journal of Industrial Information Integration, 19, 100158. https://doi.org/10.1016/j.jii.2020.100158

    Article  Google Scholar 

  77. Daniel, A., Paul, A., Ahmad, A., et al. (2016). Cooperative intelligence of vehicles for intelligent transportation systems (ITS). Wireless Personal Communications, 87, 461–484. https://doi.org/10.1007/s11277-015-3078-7

    Article  Google Scholar 

  78. Zeadally, S., Javed, M. A., & Hamida, E. B. (2020). Vehicular Communications for ITS: Standardization and Challenges. IEEE Communications Standards Magazine, 4(1), 11–17.

    Article  Google Scholar 

  79. In the 6g era, we won’t need to sacrifice sustainability for the sake of performance (2022) Nokia Bell Labs. Available at: https://www.bell-labs.com/institute/blog/in-the-6g-era-we-wont-need-to-sacrifice-sustainability-for-the-sake-of-performance/#gref (Accessed 01 Jan 2024).

  80. Nokia: The future role of transport networks in 6G. Architectural requirements and innovative approaches. Rudi Winkelmann, Marko Nousiainen, Lieven Levrau, and Paolo Di Prisco. Available at: OneStore. https://onestore.nokia.com/asset/213815. Accessed on 8 Feb 2024.

  81. Nokia adds liquid cooling technology to latest airscale base station portfolio outlining commitment to sustainability #MWC22 (no date) Nokia. Available at: https://www.nokia.com/about-us/news/releases/2022/03/01/nokia-adds-liquid-cooling-technology-to-latest-airscale-base-station-portfolio-outlining-commitment-to-sustainability-mwc22/ (Accessed 08 Feb 2024).

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments which helped us improve the content, organization, and presentation of this paper.

Funding

There is no funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

SZ and MSK proposed the idea. Also edited and wrote various sections of the manuscript. AVJ and BA collection the citation, draw the figures, and also wrote various section of the manuscript. IK proof read the paper and suggested improvement to the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mohammad S. Khan.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A.V., Appasani, B., Khan, M.S. et al. 6G for intelligent transportation systems: standards, technologies, and challenges. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01126-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01126-5

Keywords

Navigation