Skip to main content

Advertisement

Log in

Resource and traffic control optimization in MMAP[c]/PH[c]/S queueing system with PH retrial times and catastrophe phenomenon

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

With the emergence of the internet and cellular networks, interest in using computer communication networks and communication systems has skyrocketed. However, unusual occurrences, like cyber attacks, power outages, network congestion, equipment failures, etc. lead to abrupt changes in the state of the system and pose a significant risk to these systems. Consequently, some/all users can be promptly eliminated from the system. These type of scenarios can be well modeled by the multi-server catastrophic queueing model (MSCQ). This article elaborates a MSCQ with the consideration of retrial phenomenon and preemptive repeat priority (PRP) scheduling. For brevity, the working of system before and after the catastrophe phenomenon is referred to as the normal and catastrophic environment, respectively. This study identifies the incoming traffic as calls which are further categorized on the basis of the model operation scenarios. In normal operation scenario, the calls are classified as handoff (\(\mathcal{H}\mathcal{C}\)) and new calls (\(\mathcal{N}\mathcal{C}\)). This study provides priority to \(\mathcal{H}\mathcal{C}\) over \(\mathcal{N}\mathcal{C}\) using PRP. Whereas, in the catastrophic environment, when the calamity strikes, the whole system is rendered inoperable, and all types of busy/waiting calls are flushed out. To reinstate services in the concerned region, a set of backup/standby channels are quickly deployed. In response to the emergency circumstances in the area, the calls made to emergency personnel are referred as emergency calls (\(\mathcal{E}\mathcal{C}\)). Hence, in this case, the incoming calls are categorized as \(\mathcal{H}\mathcal{C}\), \(\mathcal{N}\mathcal{C}\), and \(\mathcal{E}\mathcal{C}\). The \(\mathcal{E}\mathcal{C}\) are given priority using PRP over \(\mathcal{N}\mathcal{C}\)/\(\mathcal{H}\mathcal{C}\) due to the pressing need to save lives in such crucial situations. The system is modeled by a multi-dimensional Markov chain and by demonstrating that the Markov chain satisfies the requirements for asymptotically quasi-Toeplitz Markov chains, the chain’s ergodicity conditions are established. Furthermore, a non-dominated sorting genetic algorithm-II method has been employed to define and address an optimization problem to achieve the optimal number of resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ammar, S. I., & Rajadurai, P. (2019). Performance analysis of preemptive priority retrial queueing system with disaster under working breakdown services. Symmetry, 11(3), 419–434.

    Article  Google Scholar 

  2. Artalejo, J. R., & Gomez-Corral, A. (2007). Modelling communication systems with phase type service and retrial times. IEEE Communications Letters, 11(12), 955–957.

    Article  Google Scholar 

  3. Avin, S., Wintle, B. C., Weitzdörfer, J., hÉigeartaigh, Ó., Sutherland, S. S., & Rees, M. J. (2018). Classifying global catastrophic risks. Futures, 102, 20–26.

    Article  Google Scholar 

  4. Ayyappan, G., & Thilagavathy, K. (2021). Analysis of MAP (1), MAP (2)/PH/1 non-preemptive priority queueing model under classical retrial policy with breakdown, repair, discouragement, single vacation, standby server, negative arrival and impatient customers. International Journal of Applied and Computational Mathematics, 7(5), 184.

    Article  Google Scholar 

  5. Ayyappan, G., & Somasundaram, B. (2019). Analysis of two stage \(M [X_1], M[X_2]/G_1, G_2/1\) retrial G-queue with discretionary priority services, working breakdown, Bernoulli vacation, preferred and impatient units. Applications and Applied Mathematics: An International Journal, 14(2), 2.

    Google Scholar 

  6. Baumann, H., & Sandmann, W. (2012). Steady state analysis of level dependent quasi-birth-and-death processes with catastrophes. Computers & Operations Research, 39(2), 413–423.

    Article  Google Scholar 

  7. Brandwajn, A., & Begin, T. (2017). Multi-server preemptive priority queue with general arrivals and service times. Performance Evaluation, 115, 150–164.

    Article  Google Scholar 

  8. Chakravarthy, S. R. (2017). A catastrophic queueing model with delayed action. Applied Mathematical Modelling, 46, 631–649.

    Article  Google Scholar 

  9. Chakravarthy, S. R., Dudin, A. N., & Klimenok, V. I. (2010). A retrial queueing model with map arrivals, catastrophic failures with repairs, and customer impatience. Asia-Pacific Journal of Operational Research, 27(06), 727–752.

    Article  Google Scholar 

  10. Chakravarthy, S. R. (2020). A retrial queueing model with thresholds and phase type retrial times. Journal of Applied Mathematics & Informatics, 3–4, 351.

    Google Scholar 

  11. Chang, W. (1965). Preemptive priority queues. Operations Research, 13(5), 820–827.

    Article  Google Scholar 

  12. Dabrowski, C. (2015). Catastrophic event phenomena in communication networks: A survey. Computer Science Review, 18, 10–45.

    Article  Google Scholar 

  13. Dayar, T. (2012). Analyzing Markov chains using Kronecker products: Theory and applications. Springer.

    Book  Google Scholar 

  14. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  15. Dharmaraja, S., Jindal, V., & Alfa, A. S. (2008). Phase-type models for cellular networks supporting voice, video and data traffic. Mathematical and Computer Modelling, 47(11–12), 1167–1180.

    Article  Google Scholar 

  16. Dudin, A., Kim, C., Dudin, S., & Dudina, O. (2016). Analysis and optimization of Guard Channel Policy with buffering in cellular mobile networks. Computer Networks, 107, 258–269.

    Article  Google Scholar 

  17. Dudin, S., & Dudina, O. (2019). Retrial multi-server queuing system with PHF service time distribution as a model of a channel with unreliable transmission of information. Applied Mathematical Modelling, 65, 676–695.

    Article  Google Scholar 

  18. GnanaSekar, M. M. N., & Kandaiyan, I. (2022). Analysis of an \(M/G/1\) retrial queue with delayed repair and feedback under working vacation policy with impatient customers. Symmetry, 14(10), 2024.

    Article  Google Scholar 

  19. He, Q. M. (2014). Fundamentals of matrix-analytic methods (Vol. 365). Springer.

    Book  Google Scholar 

  20. He, Q. M., & Alfa, A. S. (2018). Space reduction for a class of multidimensional Markov chains: A summary and some applications. INFORMS Journal on Computing, 30(1), 1–10.

    Article  Google Scholar 

  21. Jain, V., Raj, R., & Dharmaraja, S. (2021). Numerical optimization of loss system with retrial phenomenon in cellular networks. International Journal of Operatinal Research (In Press).

  22. Jain, V., Raj, R., & Dharmaraja, S. (2022). Performability analysis of a \(M M A P [2]/P H[2]/S\) model with \(P H\) retrial times. Communication in Statistics Theory and Methods (In Press).

  23. Kim, C., Dudin, S., Taramin, O., & Baek, J. (2013). Queueing system \(MAP/ PH/ N/ N+ R\) with impatient heterogeneous customers as a model of call center. Applied Mathematical Modelling, 37(3), 958–976.

    Article  Google Scholar 

  24. Kim, J., & Kim, B. (2016). A survey of retrial queueing systems. Annals of Operations Research, 247(1), 3–36.

    Article  Google Scholar 

  25. Kishorbhai, V. Y., & Vasantbhai, N. N. (2017). AON: A survey on emergency communication systems during a catastrophic disaster. Procedia Computer Science, 115, 838–845.

    Article  Google Scholar 

  26. Klimenok, V., & Dudin, A. (2006). Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory. Queueing Systems, 54(4), 245–259.

    Article  Google Scholar 

  27. Krishnamoorthy, A., Babu, S., & Narayanan, V. C. (2008). MAP/(PH/PH)/c queue with self-generation of priorities and non-preemptive service. Stochastic Analysis and Applications, 26(6), 1250–1266.

    Article  Google Scholar 

  28. Kumar, N., & Gupta, U. C. (2023). Analysis of BMAP/MSP/1 queue with MAP generated negative customers and disasters. Communications in Statistics-Theory and Methods, 52(12), 4283–4309.

    Article  Google Scholar 

  29. Kumar, N., & Gupta, U. C. (2020). Analysis of batch Bernoulli process subject to discrete-time renewal generated binomial catastrophes. Annals of Operations Research, 287(1), 257–283.

    Article  Google Scholar 

  30. Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  31. Liu, T. H., Hsu, H. Y., Ke, J. C., & Chang, F. M. (2023). Preemptive priority Markovian queue subject to server breakdown with imperfect coverage and working vacation interruption. Computation, 11(5), 89.

    Article  Google Scholar 

  32. Machihara, F. (1995). A bridge between preemptive and non-preemptive queueing models. Performance Evaluation, 23(2), 93–106.

    Article  Google Scholar 

  33. Manoj, B. S., & Baker, A. H. (2007). Communication challenges in emergency response. Communications of the ACM, 50(3), 51–53.

    Article  Google Scholar 

  34. Raj, R., & Jain, V. (2023). Optimization of traffic control in \(MMAP[2]/PH[2]/S\) priority queueing model with \({PH}\) retrial times and preemptive repeat policy. Journal of Industrial and Management Optimization, 19(4), 2333–2353.

    Article  Google Scholar 

  35. Shin, Y. W., & Moon, D. H. (2011). Approximation of M/M/c retrial queue with PH-retrial times. European Journal of Operational Research, 213(1), 205–209.

    Article  Google Scholar 

  36. Sudhesh, R., Savitha, P., & Dharmaraja, S. (2017). Transient analysis of a two-heterogeneous servers queue with system disaster, server repair and customers’ impatience. Top, 25(1), 179–205.

    Article  Google Scholar 

  37. Wang, J., Liu, B., & Li, J. (2008). Transient analysis of an M/G/1 retrial queue subject to disasters and server failures. European Journal of Operational Research, 189(3), 1118–1132.

    Article  Google Scholar 

  38. Yajima, M., & Phung-Duc, T. (2019). A central limit theorem for a Markov-modulated infinite-server queue with batch Poisson arrivals and binomial catastrophes. Performance Evaluation, 129, 2–14.

  39. Yechiali, U. (2007). Queues with system disasters and impatient customers when system is down. Queueing Systems, 56(3), 195–202.

Download references

Funding

The first author, Raina Raj is supported by a senior research fellowship (SRF) grant No.- 09/1131(0024)/2018-EMR-I from Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidyottama Jain.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Generator matrix entries

A Generator matrix entries

1.1 A.1 Upper diagonal matrix entries

The entries of Equation (1) are given as follows

$$ \begin{aligned}{} & {} E_x(y) = {\text {diag}}\{E_x(y,z)\};\forall y = \overline{0,S}, z = \overline{0,S-y},\\{} & {} E_0(y,z) = {\left\{ \begin{array}{ll} {{\text {col}}}(E_0(0,0,u));\forall u = \overline{0,S} ,\\ {{\text {col}}}(E_0(y,z,0),E_0(y,z,S)); \\ \quad \forall S=K \text {or}~ K<S ~~ \& ~~ y+z \le K,\\ E_0(y,z,0); \forall K<S ~ \& ~ y+z > K, \end{array}\right. } \\{} & {} E_0(y,z,u) = {\left\{ \begin{array}{ll} E_0(y,z,u,0); \forall u = \overline{0,S-1},\\ {{\text {col}}}(E_0(y,z,S,w));\forall w=\overline{0,K-y-z}, \end{array}\right. } \\{} & {} E_x(y,z) = E_x(y,z,0)= E_x(y,z,0,0);\forall x \ge 1,\\{} & {} \hat{E}_x(y) = \begin{pmatrix} \hat{E}_x(y,0)&{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \hat{E}_x(y,1)&{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0&{} \hat{E}_x(y,2) &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad \hat{E}_x(y,S-y) \end{pmatrix};\\{} & {} \quad \forall y = \overline{0,S-1},\\ \end{aligned}$$
$$ \begin{aligned}{} & {} \hat{E}_0(y,z) = {\left\{ \begin{array}{ll} {\text {col}}(\hat{E}_0(0,0,u)); \forall u=\overline{0,S},\\ {\text {col}}(\hat{E}_0(y,z,0),\hat{E}_0(y,z,S));\\ \forall S=K ~\text {or}~~ K<S ~ \& ~ y+z \le K,\\ \hat{E}_0(y,z,0); \forall K<S ~ \& ~ y+z > K, \end{array}\right. }\\{} & {} \hat{E}_0(y,z,u) = {\left\{ \begin{array}{ll} \hat{E}_0(y,z,u,0); \forall u = \overline{0,S-1},\\ {\text {col}}(\hat{E}_0(y,z,S,w)); \forall w = \overline{0,K-y-z}, \end{array}\right. } \\{} & {} \hat{E}_x(y,z) = \hat{E}_x(y,z,0)= \hat{E}_x(y,z,0,0);\forall x \ge 1.\\ \end{aligned}$$

1.2 A.2 First column matrix entries

The entries of Equation (4) are given as follows

$$\begin{aligned}&W_x(y) = \begin{pmatrix} W_x(y,0)&{}\quad 0&{}\quad \cdots &{}\quad 0\\ W_x(y,1)&{}\quad 0&{}\quad \cdots &{}\quad 0\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ W_x(y,S-y)&{}\quad 0&{}\quad \cdots &{}\quad 0 \end{pmatrix}; \forall y = \overline{0,S},\\&\text {where }\mathscr {Q}^{'}_{x,0}\hbox { and } W_x(y)\hbox { are square matrices of order }\\&S+1\hbox { and }S-y+1,\\&\text {respectively,} \end{aligned}$$
$$ \begin{aligned}&W_0(0,0) = \text {diag}\{W_0(0,0,0),W_0(0,0,1),\ldots ,W_0(0,0,S)\},\\&W_0(y,z) \\&\quad = {\left\{ \begin{array}{ll} {\small { \begin{pmatrix} W_0(y,z,0) &{}\!\quad W_0(y,z,1) &{} \!\quad \cdots &{} \!\quad W_0(y,z,S-1)\\ 0 &{} \!\quad 0 &{}\quad \!\cdots &{}\!\quad 0 &{}\!\quad W_0(y,z,S) \end{pmatrix}}}; \\ \forall S=K\text { or }K<S~ \& ~ y+z \le K,\\ {\text {row}}(W_x(y,z,0),W_x(y,z,1),\ldots ,W_x(y,z,S)); \\ \forall K<S~ \& ~ y+z >K, \end{array}\right. }\\&W_0(y,z,u) \\&\quad = {\left\{ \begin{array}{ll} W_0(y,z,u,0); \forall u = \overline{0,S-1},\\ \text {diag}\{W_0(0,0,S,0),\ldots ,W_0(0,0,S,K)\},\\ \begin{pmatrix} W_0(y,z,S,0) &{} \quad 0 &{}\quad \cdots &{} \quad 0 &{}\quad 0 \\ \vdots &{}\quad \vdots &{} \quad \ddots &{}\quad \vdots &{} \quad \vdots \\ 0 &{} \quad 0 &{}\quad \cdots &{} \quad W_0(y,z,S,K-y-z-1) &{}\quad 0 \end{pmatrix}; \\ \forall y+z < K,\\ {\text {row}}\{W_0(y,z,S,0),W_0(y,z,S,1),\ldots ,W_0(y,z,S,K-y-z)\};\\ \forall y+z \ge K. \end{array}\right. }\\ \end{aligned}$$

1.3 A.3 Lower diagonal matrix entries

The entries of Equation (7) are given as follows

$$ \begin{aligned}&G_{x}(y) = \text {diag}\{ G_{x}(y,0),G_{x}(y,1), \ldots , G_{x}(y,S-y)\} \\&\quad + \text {diag}^+\{ \hat{G}_{x}(y,0), \hat{G}_{x}(y,1),\ldots ,\hat{G}_{x}(y,S-y-1)\};\\&\quad \forall y = \overline{0,S},\\&G_1(y,z) \\&\quad = {\left\{ \begin{array}{ll} {\text {row}}(G_1(0,0,u));\forall u=\overline{0,S},\\ {\text {row}}(G_1(y,z,0),G_1(y,z,S)); \\ \forall S=K \text {or} ~K<S ~ \& ~ y+z \le K,\\ G_1(y,z,0); \forall K<S ~ \& ~ y+z> K, \end{array}\right. } \\&G_1(y,z,u)\\&\quad = {\left\{ \begin{array}{ll} G_1(y,z,u,0); \forall u = \overline{0,S-1},\\ {\text {row}}(G_1(y,z,S,w));\forall w=\overline{0,K-y-z}, \end{array}\right. } \\&G_x(y,z) = G_x(y,z,0)= G_x(y,z,0,0);x \ge 2,~~\\&\hat{G}_1(y,z) = {\left\{ \begin{array}{ll} {\text {row}}(\hat{G}_1(y,z,0),\hat{G}_1(y,z,S)); \\ \forall S=K \text {or}~K<S ~ \& ~ y+z< K,\\ \hat{G}_1(y,z,0); \forall K<S ~ \& ~ y+z \ge K, \end{array}\right. }\\ {}&\hat{G}_1(y,z,u) = {\left\{ \begin{array}{ll} \hat{G}_1(y,z,u,0); \forall u = \overline{0,S-1},\\ {\text {row}}(\hat{G}_1(y,z,S,w)); \forall w=\overline{0,K-y-z}, \end{array}\right. } \\&\hat{G}_x(y,z) = \hat{G}_x(y,z,0)= \hat{G}_x(y,z,0,0);x \ge 2.\\ \end{aligned}$$

1.4 A.4 Main diagonal matrix entries

The entries of Equations (12) and (13) are given as follows

$$ \begin{aligned}&F_0(y,z)\\&\quad = {\left\{ \begin{array}{ll} \text {diag}\{ F_0(0,0,0),F_0(0,0,1), \ldots , F_0(0,0,S)\} \\ + \text {diag}^-\{ R_0(0,0,1), R_0(0,0,2),\ldots ,R_0(0,0,S)\},\\ \text {diag}\{ F_0(y,z,0),F_0(y,z,S)\};\\ \forall S=K\hbox { or }K<S ~ \& ~ y+z \le K,\\ F_0(y,z,0); \forall K<S ~ \& ~ y+z > K, \end{array}\right. }\\&F_0(y,z,u)\\&\quad = {\left\{ \begin{array}{ll} F_0(y,z,u,0); \forall u = \overline{0,S-1},\\ \text {diag}\{ F_0(y,z,S,0), \ldots ,\\ F_0(y,z,S,K-y-z)\} \\ + \text {diag}^-\{ S^E_0(y,z,S,1),\ldots , \\ S^E_0(y,z,S,K-y-z)\} \\ + \text {diag}^+\{ E_0(y,z,S,0), \ldots ,\\ E_0(y,z,S,K-y-z-1)\} \\ \end{array}\right. } \end{aligned}$$
$$ \begin{aligned}&F_x(y,z) = F_x(y,z,0)= F_x(y,z,0,0);\forall x \ge 1,\\&N_0(0,0) \\&\quad = \begin{pmatrix} N_0(0,0,0) &{}\quad N_0(0,0,1) &{}\quad \cdots &{} N_0(0,0,S-1) &{}\quad 0\\ 0&{}\quad 0 &{} \quad \cdots &{}\quad 0 &{}\quad N_0(0,0,S) \end{pmatrix}^T,\\&N_0(y,z) \\&\quad = {\left\{ \begin{array}{ll} \text {diag}\{ N_0(y,z,0),N_0(y,z,S)\};\\ forall S=K\text { or }K<S ~ \& ~ y+z< K, \\ {\text {col}}( N_0(y,z,0) , 0) ; \forall K<S~ \& ~ y+z = K,\\ N_0(y,z,0);\forall K<S~ \& ~ y+z > K, \end{array}\right. } \end{aligned}$$
$$ \begin{aligned}&N_0(y,z,u)\\&\quad = {\left\{ \begin{array}{ll} N_0(y,z,u,0); \forall u = \overline{0,S-1},\\ \begin{pmatrix} N_0(y,z,S,0) &{}\quad 0 &{} \quad \cdots &{}\quad 0 \\ \vdots &{} \quad \vdots &{}\quad \ddots &{} \quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad N_0(y,z,S,K-y-z-1)\\ 0 &{}\quad 0&{}\quad \cdots &{}\quad 0 \end{pmatrix}, \end{array}\right. } \\&N_x(y,z) = N_x(y,z,0)= N_x(y,z,0,0);\forall x \ge 1,\\&S^N_0(y,z) \\&\quad = {\left\{ \begin{array}{ll} \begin{pmatrix} S^N_0(0,1,0) &{}\quad S^N_0(0,1,1) &{}\quad \cdots &{}\quad S^N_0(0,1,S-1)&{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad S^N_0(0,1,S) \end{pmatrix},\\ \text {diag}\{ S^N_0(y,z,0),S^N_0(y,z,S)\}; \forall S=K\hbox { or } K<S ~ \& ~y+z \le K,\\ {\text {row}}(S^N_0(y,z,0),0); \forall K<S~ \& ~ y+z = K+1,\\ S^N_0(y,z,0); \forall K<S~ \& ~ y+z> K+1, \end{array}\right. }\\&S^N_0(y,z,u)\\&\quad = {\left\{ \begin{array}{ll} S^N_0(y,z,u,0); \forall u = \overline{0,S-1},\\ \begin{pmatrix} S^N_0(y,z,S,0) &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ \vdots &{} \quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{} \quad 0 &{}\quad \cdots &{} \quad S^N_0(y,z,S,K-y-z+1) \end{pmatrix}, \end{array}\right. } \\&S^N_x(y,z) = S^N_x(y,z,0)= S^N_x(y,z,0,0);\forall x \ge 1,\\&\hat{F}_{x}(y)= \begin{pmatrix} \hat{F}_{x}(y,0) &{}\quad 0 &{} \quad \cdots &{} \quad 0 \\ 0 &{} \quad \hat{F}_{x}(y,1) &{} \quad \cdots &{}\quad 0\\ &{} &{}\quad \\ \vdots &{}\quad \vdots &{} \quad \ddots &{}\quad \vdots \\ 0 &{} \quad 0&{} \quad \cdots &{} \quad \hat{F}_{x}(y,S-y-1)\\ 0 &{} \quad 0 &{}\quad \cdots &{}\quad 0 \end{pmatrix},\\&\hat{F}_0(y,z) \\&\quad = {\left\{ \begin{array}{ll} \begin{pmatrix} \hat{F}_0(0,0,0) &{}\quad \cdots &{} \quad \hat{F}_0(0,0,S-1)&{}\quad 0\\ 0 &{} \quad \cdots &{}\quad 0 &{}\quad \hat{F}_0(0,0,S) \end{pmatrix}^T,\\ \text {diag}\{ \hat{F}_0(y,z,0),\hat{F}_0(y,z,S)\}; \forall S=K ~\text {or}~ K<S~ \& ~ y+z< K,\\ {\text {col}}(\hat{F}_0(y,z,0),\hat{F}_0(y,z,S)); \forall S=K ~\text {or} ~~K<S~ \& ~ y+z = K,\\ \hat{F}_0(y,z,0); \forall S=K ~ \text {or}~ K<S~ \& ~ y+z > K, \end{array}\right. }\\&\hat{F}_0(y,z,u) \\&\quad = {\left\{ \begin{array}{ll} \hat{F}_0(y,z,u,0); \forall u = \overline{0,S-1},\\ \begin{pmatrix} \hat{F}_0(y,z,S,0) &{}\quad 0 &{}\quad \cdots &{} \quad 0\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad 0 &{} \quad \cdots &{}\quad \hat{F}_0(y,z,S,K-y-z-1)\\ 0 &{}\quad 0&{} \quad \cdots &{}\quad 0 \end{pmatrix}, \end{array}\right. } \end{aligned}$$
$$ \begin{aligned}&\hat{F}_x(y,z) = \hat{F}_x(y,z,0)= \hat{F}_x(y,z,0,0);x \ge 1,\\&\bar{F}_{x}(y)= \begin{pmatrix} \bar{F}_{x}(y,0) &{}\quad 0 &{} \quad \cdots &{}\quad 0 \\ 0 &{}\quad \bar{F}_{x}(y,1) &{}\quad \cdots &{} \quad 0 \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{} \quad \cdots &{} \quad \bar{F}_{x}(y,S-y) &{}\quad 0 \end{pmatrix},\\ {}&\bar{F}_0(y,z)\\&\quad = {\left\{ \begin{array}{ll} \begin{pmatrix} \bar{F}_0(1,0,0) &{} \quad \cdots &{}\quad \bar{F}_0(1,0,S-1)&{}\quad 0 \\ 0&{} \quad \cdots &{}\quad 0&{} \quad \bar{F}_0(1,0,S) \end{pmatrix},\\ \text {diag}\{ \bar{F}_0(y,z,0),\bar{F}_0(y,z,S)\}; \\ \forall S=K\hbox { or }K<S~ \& ~ y+z \le K,\\ {\text {row}}( \bar{F}_0(y,z,0),\bar{F}_0(y,z,S)); \\ \forall S=K\hbox { or }K<S ~ \& ~ y+z = K+1,\\ \bar{F}_0(y,z,0); \forall K<S~ \& ~ y+z > K+1, \end{array}\right. }\\&\bar{F}_0(y,z,u)\\&\quad = {\left\{ \begin{array}{ll} \bar{F}_0(y,z,u,0); ~~~ \forall u = \overline{0,S-1},\\ \begin{pmatrix} \bar{F}_0(y,z,S,0) &{} 0 &{} \cdots &{} 0\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} \bar{F}_0(y,z,S,K{-}y{-}z{-}1)&{} \bar{F}_0(y,z,S,K{-}y{-}z) \end{pmatrix};\\ y\le K,z=0, \\ \end{array}\right. } \\&\bar{F}_x(y,z) = \bar{F}_x(y,z,0)= \bar{F}_x(y,z,0,0);\forall x \ge 1. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, R., Jain, V. Resource and traffic control optimization in MMAP[c]/PH[c]/S queueing system with PH retrial times and catastrophe phenomenon. Telecommun Syst 84, 341–362 (2023). https://doi.org/10.1007/s11235-023-01053-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01053-x

Keywords

Navigation