Skip to main content

Advertisement

Log in

Energy efficiency analysis and optimization for reconfigurable intelligent surface aided DF relay cooperation with minimum-rate guarantee

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

We consider an energy-efficient reconfigurable intelligent surface (RIS)-aided decode-and-forward relay cooperation scheme with minimum-rate guarantee. Although the emerging RIS has a similar role as the traditional relay, RIS and relay are essentially different and can complement each other. Firstly, we derive the upper bounds on the energy efficiency (EE) of the considered scheme over Rayleigh fading channels for given transmit powers at the source and relay. Secondly, we investigate the EE optimization problem with minimum-rate guarantee in two scenarios with fixed and upper-bounded total transmit powers. In the fixed power scenario, the phase shifts at two time slots are optimized based on the channel state information (CSI), and then the EE optimization problem is reformulated to an equivalent optimal power allocation problem with minimum-rate guarantee, which can be solved by convex optimization techniques. In the upper-bounded power scenario, the corresponding non-convex EE optimization problem is solved by the proposed method using fractional programming and generalized Dinkelbach’s algorithm. Finally, illustrative simulation results demonstrate the superiorities of the considered scheme as compared with the benchmark schemes and reveal the effects of various factors on its performance. Simulation results also show the good robustness of the considered scheme against imperfect CSI and discrete phase shifts of RIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availibility

All data generated or analysed during this study are included in this article.

References

  1. Su, Y., Lu, X., Zhao, Y., et al. (2019). Cooperative communications with relay selection based on deep reinforcement learning in wireless sensor networks. IEEE Sensors Journal, 19(20), 9561–9569. https://doi.org/10.1109/JSEN.2019.2925719

    Article  Google Scholar 

  2. Zhang, Z., Jin, S., Chen, H., et al. (2008). A cooperation strategy based on Nash bargaining solution in cooperative relay networks. IEEE Transactions on Vehicular Technology, 57(4), 2570–2577. https://doi.org/10.1109/TVT.2007.912960

    Article  Google Scholar 

  3. Laneman, J. N., Wornell, G. W., & Tse, D. N. C. (2001). An efficient protocol for realizing cooperative diversity in wireless networks. In Proceedings of IEEE international symposium on information theory, Washing (pp. 294–297). https://doi.org/10.10.1109/ISIT.2001.936157

  4. Yao, S., Kim, T. T., Skoglund, M., et al. (2013). Half-duplex relaying over slow fading channels based on quantize-and-forward. IEEE Transactions on Information Theory, 59(2), 860–872. https://doi.org/10.1109/TIT.2012.2224318

    Article  Google Scholar 

  5. Zhang, S., Yang, F., & Tang, L. (2015). Network-coding-based multisource multirelay LDPC-coded cooperative MIMO. Transactions on Emerging Telecommunications Technologies, 16(3), 491–502. https://doi.org/10.1002/ett.2659

    Article  Google Scholar 

  6. Jin, X. L., & Kim, H. N. (2018). A new switching superposition strategy in decode-forward relay system. IEEE Transactions on Vehicular Technology, 67(8), 7826–7830. https://doi.org/10.1109/TVT.2018.2835837

    Article  Google Scholar 

  7. Tataria, H., Shafi, M., Molisch, A. F., et al. (2021). 6G Wireless systems: Vision, requirements, challenges, insights, and opportunities. Proceedings of the IEEE, 109(7), 1166–1199. https://doi.org/10.1109/JPROC.2021.3061701

    Article  Google Scholar 

  8. You, X. H., Wang, C. X., Huang, J., et al. (2021). Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Science China Information Sciences, 64(1), 1–74. https://doi.org/10.1007/s11432-020-2955-6

    Article  Google Scholar 

  9. Renzo, M. D., Zappone, A., Debbah, M., et al. (2020). Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and road ahead. IEEE Journal on Selected Areas in Communications, 38(11), 2450–2525. https://doi.org/10.1109/JSAC.2020.3007211

    Article  Google Scholar 

  10. Tang, W. K., Chen, M. Z., Dai, J. Y., et al. (2020). Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design. IEEE Wireless Communication, 27(2), 180–187. https://doi.org/10.1109/MWC.001.1900308

    Article  Google Scholar 

  11. Renzo, M. D., Debbah, M., Phan-Huy, D., et al. (2019). Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-019-1438-9

    Article  Google Scholar 

  12. Alexandropoulos, G. C., Lerosey, G., Debbah, M., et al. (2020). Reconfigurable intelligent surfaces and metamaterials: The potential of wave propagation control for 6G wireless communications. arXiv:2006.11136

  13. Jian, M., Alexandropoulos, G. C., Basar, E., et al. (2022). Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques. Intelligent and Converged Networks, 3(1), 1–32. https://doi.org/10.23919/ICN.2022.0005

    Article  Google Scholar 

  14. Alexandropoulos, G. C., Stylianopoulos, K., Huang, C., et al. (2022). Pervasive machine learning for smart radio environments enabled by reconfigurable intelligent surfaces. Proceedings of the IEEE, 110(9), 1494–1525. https://doi.org/10.1109/JPROC.2022.3174030

    Article  Google Scholar 

  15. Strinati, E. C., Alexandropoulos, G. C., Wymeersch, H., et al. (2021). Reconfigurable, intelligent, and sustainable wireless environments for 6G smart connectivity. IEEE Communications Magazine, 59(10), 99–105. https://doi.org/10.1109/MCOM.001.2100070

    Article  Google Scholar 

  16. Elmossallamy, M. A., Zhang, H., Song, L., et al. (2020). Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities. IEEE Transactions on Cognitive Communications and Networking, 6(3), 990–1002. https://doi.org/10.1109/TCCN.2020.2992604

    Article  Google Scholar 

  17. Tang, W. K., Dai, J. Y., Chen, M. Z., et al. (2020). MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation. IEEE Journal on Selected Areas in Communications, 38(11), 2683–2699. https://doi.org/10.1109/JSAC.2020.3007055

  18. Ye, J., Guo, S., & Alouini, M. S. (2020). Joint reflecting and precoding designs for SER minimization in reconfigurable intelligent surfaces assisted MIMO systems. IEEE Transactions on Wireless Communications, 19(8), 5561–5574. https://doi.org/10.1109/TWC.2020.2994455

    Article  Google Scholar 

  19. Li, S., Duo, B., Yuan, X., et al. (2020). Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming. IEEE Wireless Communications Letters, 9(5), 716–720. https://doi.org/10.1109/LWC.2020.2966705

    Article  Google Scholar 

  20. Ranjha, A., & Kaddoum, G. (2021). URLLC facilitated by mobile UAV relay and RIS: A joint design of passive beamforming, blocklength and UAV positioning. IEEE Internet of Things Journal, 8(6), 4618–4627. https://doi.org/10.1109/JIOT.2020.3027149

    Article  Google Scholar 

  21. Wu, Q., & Zhang, R. (2020). Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints. IEEE Journal on Selected Areas in Communications, 38(8), 1735–1748. https://doi.org/10.1109/JSAC.2020.3000807

    Article  Google Scholar 

  22. Pan, C., Ren, H., Wang, K., et al. (2020). Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 38(8), 1719–1734. https://doi.org/10.1109/JSAC.2020.3000802

    Article  Google Scholar 

  23. Wang, H., Liu, C., Shi, Z., et al. (2020). On power minimization for IRS-aided downlink NOMA systems. IEEE Wireless Communications Letters, 9(11), 1808–1811. https://doi.org/10.1109/LWC.2020.2999097

    Article  Google Scholar 

  24. Hou, T., Liu, Y., Song, Z., et al. (2020). MIMO-NOMA networks relying on reconfigurable intelligent surface: A signal cancellation based design. IEEE Transactions on Communications, 68(11), 6932–6944. https://doi.org/10.1109/TCOMM.2020.3018179

    Article  Google Scholar 

  25. Di Renzo, M., Ntontin, K., Song, J., et al. (2020). Reconfigurable intelligent surfaces vs relaying: Differences, similarities, and performance comparison. The IEEE Open Journal of the Communications Society, 2020(1), 798–807. https://doi.org/10.1109/OJCOMS.2020.3002955

    Article  Google Scholar 

  26. Björnson, E., Özdogan, Ö., & Larsson, E. G. (2020). Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wireless Communications Letters, 9(2), 244–248. https://doi.org/10.1109/LWC.2019.2950624

    Article  Google Scholar 

  27. Yildirim, I., Kilinc, F., Basar, E., et al. (2021). Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension. IEEE Communications Letters, 25(5), 1692–1696. https://doi.org/10.1109/LCOMM.2021.3054819

    Article  Google Scholar 

  28. Abdullah, Z., Chen, G., Lambotharan, S., et al. (2020). A hybrid relay and intelligent reflecting surface network and its ergodic performance analysis. IEEE Wireless Communications Letters, 9(10), 1653–1657. https://doi.org/10.1109/LWC.2020.2999918

    Article  Google Scholar 

  29. Ying, X., Demirhan, U., & Alkhateeb, A. (2020). Relay aided intelligent reconfigurable surfaces: Achieving the potential without so many antennas. arXiv:2006.06644v1

  30. Abdullah, Z., Chen, G., Lambotharan, S., et al. (2021). Optimization of intelligent reflecting surface assisted full-duplex relay networks. IEEE Wireless Communications Letters, 10(2), 363–367. https://doi.org/10.1109/LWC.2020.3031343

    Article  Google Scholar 

  31. Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access, 5, 11727–11758. https://doi.org/10.1109/ACCESS.2017.2711784

    Article  Google Scholar 

  32. Ma, J., Huang, C., Cui, S., et al. (2019). Energy efficiency of amplify-and-forward full-duplex relay channels. IEEE Wireless Communications Letters, 8(5), 1365–1368. https://doi.org/10.1109/LWC.2019.2918290

  33. Zhou, X., & Li, Q. (2018). Energy efficiency for SWIPT in MIMO two-way amplify-and-forward relay networks. IEEE Transactions on Vehicular Technology, 67(6), 4910–4924. https://doi.org/10.1109/TVT.2018.2819682

    Article  Google Scholar 

  34. Ntontin, K., Renzo, M. D., & Lazarakis, F. (2020). On the rate and energy efficiency comparison of reconfigurable intelligent surfaces with relays. SPAWC. https://doi.org/10.1109/SPAWC48557.2020.9154308

    Article  Google Scholar 

  35. Li, Y., Xiong, J., Kwan Ng, D. W., et al. (2021). Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission. IEEE Transactions on Signal Processing, 69, 1407–1421. https://doi.org/10.1109/TSP.2020.3047474

    Article  Google Scholar 

  36. Su, Y., Pang, X., Chen, S., et al. (2022). Spectrum and energy efficiency optimization in IRS-assisted UAV networks. IEEE Transactions on Communications, 70(10), 6489–6502. https://doi.org/10.1109/TCOMM.2022.3201122

    Article  Google Scholar 

  37. Zhuang, Y., Li, X., Ji, H., et al. (2022). Exploiting intelligent reflecting surface for energy efficiency in ambient backscatter communication-enabled NOMA networks. IEEE Transactions on Green Communications and Networks, 6(1), 4157–4170. https://doi.org/10.1109/TGCN.2022.3144465

    Article  Google Scholar 

  38. Abdullah, Z., Alexandropoulos, G. C., Kisseleff, S., et al. (2022). Combining relaying and reflective surfaces: Power consumption and energy efficiency analysis. arXiv:2210.05589

  39. Basar, E., Di Renzo, M., De Rosny, J., et al. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753–116773. https://doi.org/10.1109/ACCESS.2019.2935192

    Article  Google Scholar 

  40. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498. https://doi.org/10.1287/mnsc.13.7.492

    Article  Google Scholar 

  41. Zappone, A., & Jorswieck, E. (2015). Energy efficiency in wireless networks via fractional programming theory. Foundations and Trends in Communications and Information Theory, 11(3–4), 185–399. https://doi.org/10.1561/0100000088

    Article  Google Scholar 

  42. Huang, C., Zappone, A., Alexandropoulos, G. C., et al. (2019). Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 18(8), 4157–4170. https://doi.org/10.1109/TWC.2019.2922609

    Article  Google Scholar 

  43. Alexandropoulos, G. C., Papadogiannis, A., & Berberidis, K. (2010). Performance analysis of cooperative networks with relay selection over Nakagami-m fading channels. IEEE Signal Processing Letters, 17(5), 441–444. https://doi.org/10.1109/LSP.2010.2042992

    Article  Google Scholar 

  44. Zhang, J., Zhang, T., Huang, J., et al. (2009). Symbol error rate of selective cooperation in Nakagami-m environments. ICIEA. https://doi.org/10.1109/ICIEA.2009.5138307

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant 61501256, in part by the Natural Science Foundation of Jiangsu Higher Education Institutions under Grant 20KJB510034, in part by the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education under Grant JZNY202112, and in part by the NUPTSF under Grant NY219073.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shunwai Zhang.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Lemma 1

For any \({\tilde{\textbf{P}}} \in S\) and \({\xi _{\tilde{\textbf{P}}}} = \mathop {\min }\limits _{1 \le k \le K} \frac{{{f_k}\left( {\tilde{\textbf{P}}} \right) }}{{{g_k}\left( {\tilde{\textbf{P}}} \right) }}\), we have \(F\left( {{\xi _{\tilde{\textbf{P}}}}} \right) \ge 0\), with equality if and only if \({\tilde{\textbf{P}}} = \arg \mathop {\max }\limits _{{\textbf{P}} \in S} \left\{ \mathop {\min }\limits _{1 \le k \le K} \left\{ {{f_k}\left( {\textbf{P}} \right) - {\xi _{\tilde{\textbf{P}}}}{g_k}\left( {\textbf{P}} \right) } \right\} \right\} \).

Proof

For any \({\tilde{\textbf{P}}} \in S\) and \({\xi _{\tilde{\textbf{P}}}} = \mathop {\min }\limits _{1 \le k \le K} \frac{{{f_k}\left( {\tilde{\textbf{P}}} \right) }}{{{g_k}\left( {\tilde{\textbf{P}}} \right) }}\), Lemma 1 can be obtained as follows:

$$\begin{aligned}&F\left( {{\xi _{\tilde{\textbf{P}}}}} \right) = \mathop {\max }\limits _{{\textbf{P}} \in S} \left\{ {\mathop {\min }\limits _{1 \le k \le K} \left\{ {{f_k}\left( {\textbf{P}} \right) - {\xi _{\tilde{\textbf{P}}}}{g_k}\left( {\textbf{P}} \right) } \right\} } \right\} \nonumber \\&= \mathop {\max }\limits _{{\textbf{P}} \in S} \left\{ {\mathop {\min }\limits _{1 \le k \le K} \left\{ {{f_k}\left( {\textbf{P}} \right) \mathrm{{-}} \mathop {\min }\limits _{1 \le k \le K} \frac{{{f_k}\left( {\tilde{\textbf{P}}} \right) }}{{{g_k}\left( {\tilde{\textbf{P}}} \right) }}{g_k}\left( {\textbf{P}} \right) } \right\} } \right\} \nonumber \\&\mathop {\ge } \limits ^a \mathop {\min }\limits _{1 \le k \le K} \left\{ {{f_k}\left( {\tilde{\textbf{P}}} \right) - \mathop {\min }\limits _{1 \le k \le K} \frac{{{f_k}\left( {\tilde{\textbf{P}}} \right) }}{{{g_k}\left( {\tilde{\textbf{P}}} \right) }}{g_k}\left( {\tilde{\textbf{P}}} \right) } \right\} \nonumber \\&= {f_{{k^*}}}\left( {\tilde{\textbf{P}}} \right) - \frac{{{f_{{k^*}}}\left( {\tilde{\textbf{P}}} \right) }}{{{g_{{k^*}}}\left( {\tilde{\textbf{P}}} \right) }}{g_{{k^*}}}\left( {\tilde{\textbf{P}}} \right) = 0. \end{aligned}$$
(A1)

(a: The equation holds if and only if \({\tilde{\textbf{P}}} = \arg \mathop {\max }\limits _{{\textbf{P}} \in S}\bigg \{ \mathop {\min }\limits _{1 \le k \le K} \left\{ {{f_k}\left( {\textbf{P}} \right) - {\xi _{\tilde{\textbf{P}}}}{g_k}\left( {\textbf{P}} \right) } \right\} \bigg \}\).) \(\square \)

Appendix B

Lemma 2

\(F\left( \xi \right) \) is strictly monotonic decreasing and has a unique root.

Proof

Supposing that \({\xi _2} > {\xi _1}\), and \({\textbf{P}}_2^* = \arg \mathop {\max }\limits _{{\textbf{P}} \in S} \left\{ \mathop {\min }\limits _{1 \le k \le K} \left\{ {{f_k}\left( {\textbf{P}} \right) - {\xi _2}{g_k}\left( {\textbf{P}} \right) } \right\} \right\} \), then we can obtain the assertion that \(F\left( \xi \right) \) is strictly monotonic decreasing as follows:

$$\begin{aligned} \begin{aligned} F\left( {\xi {}_2} \right)&= \mathop {\min }\limits _{1 \le k \le K} \left\{ {{f_k}\left( {{\textbf{P}}_2^*} \right) - {\xi _2}{g_k}\left( {{\textbf{P}}_2^*} \right) } \right\} \\&< \mathop {\min }\limits _{1 \le k \le K} \left\{ {{f_k}\left( {{\textbf{P}}_2^*} \right) - {\xi _1}{g_k}\left( {{\textbf{P}}_2^*} \right) } \right\} \\&\le \mathop {\max }\limits _{{\textbf{P}} \in S} \left\{ {\mathop {\min }\limits _{1 \le k \le K} \left\{ {{f_k}\left( {\textbf{P}} \right) - {\xi _1}{g_k}\left( {\textbf{P}} \right) } \right\} } \right\} \\&= F\left( {{\xi _1}} \right) . \end{aligned} \end{aligned}$$
(B1)

Besides, it can be seen that \(\mathop {\lim }\limits _{\xi \rightarrow - \infty } F\left( \xi \right) = + \infty \), and \(\mathop {\lim }\limits _{\xi \rightarrow + \infty } F\left( \xi \right) = - \infty \), thus \(F\left( \xi \right) \) has a unique root. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Song, L., Li, J. et al. Energy efficiency analysis and optimization for reconfigurable intelligent surface aided DF relay cooperation with minimum-rate guarantee. Telecommun Syst 83, 365–380 (2023). https://doi.org/10.1007/s11235-023-01024-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01024-2

Keywords

Navigation