Skip to main content

Advertisement

Log in

Double reconfigurable intelligent surface-assisted wireless communication system for energy efficiency improvement over weibull fading channels

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a double reconfigurable intelligent surface (RIS)-assisted wireless communication system to improve energy efficiency when a direct link from source to destination is obstructed. First, we model a single RIS-assisted wireless communication system by deploying RIS midway between the source and destination link over the Weibull fading channel. Next, we consider the double-RIS system, in which RIS-1 (R1) and RIS-2 (R2) are near the source and destination respectively, with overall reflecting elements in the system equal to the single-RIS system. For both systems, we derive the closed-form expressions for the bounds (lower and upper) of ergodic capacity and exact closed-form expressions for outage probability. The accuracy of the presented theoretical framework is validated through Monte-Carlo simulations. From the comparison, we found that the double-RIS system surpasses the S-RIS system in terms of ergodic capacity and outage probability. Finally, we provide the ergodic capacity and energy efficiency analysis of both systems as a function of spectral efficiency by varying the position of RISs and notice that the double-RIS system with R1 and R2 near to source and destination is more energy efficient than the S-RIS system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Di Renzo, M., et al. (2020). Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE Journal on Selected Areas in Communications, 38(11), 2450–2525. https://doi.org/10.1109/JSAC.2020.3007211

    Article  Google Scholar 

  2. Basar, E., Di Renzo, M., De Rosny, J., Debbah, M., Alouini, M.-S., & Zhang, R. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753–116773. https://doi.org/10.1109/ACCESS.2019.2935192

    Article  Google Scholar 

  3. Boulogeorgos, A. A., & Alexiou, A. (2020). Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying. IEEE Access, 8, 94463–94483. https://doi.org/10.1109/ACCESS.2020.2995435

    Article  Google Scholar 

  4. Björnson, E., Özdogan, Ö., & Larsson, E. G. (2020). Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wireless Communications Letters, 9(2), 244–248. https://doi.org/10.1109/LWC.2019.2950624

    Article  Google Scholar 

  5. Du, L., Zhang, W., Ma, J., & Tang, Y. (2021). Reconfigurable intelligent surfaces for energy efficiency in multicast transmissions. IEEE Transactions on Vehicular Technology, 70(6), 6266–6271. https://doi.org/10.1109/TVT.2021.3080302

    Article  Google Scholar 

  6. Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M., & Yuen, C. (2019). Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 18(8), 4157–4170.

    Article  Google Scholar 

  7. You, L., Xiong, J., Ng, D. W. K., Yuen, C., Wang, W., & Gao, X. (2020). Energy efficiency and spectral efficiency tradeoff in ris-aided multiuser MIMO uplink transmission. IEEE Transactions on Signal Processing, 69, 1407–1421.

    Article  Google Scholar 

  8. Tan, F., Xu, X., Chen, H., & Li, S. (2023). Energy-efficient beamforming optimization for MISO communication based on reconfigurable intelligent surface. Physical Communication, 57, 4–11. https://doi.org/10.1016/j.phycom.2022.101996

    Article  Google Scholar 

  9. Yang, L., Yang, Y., Hasna, M. O., & Alouini, M.-S. (2020). Coverage, Probability of SNR gain, and DOR analysis of RIS-aided communication systems. IEEE Wireless Communications Letters, 9(8), 1268–1272. https://doi.org/10.1109/LWC.2020.2987798

    Article  Google Scholar 

  10. Kumar, S., Yadav, P., Kaur, M., & Kumar, R. (2022). A survey on IRS NOMA integrated communication networks. Telecommunication Systems, 80(2), 277–302. https://doi.org/10.1007/s11235-022-00898-y

    Article  Google Scholar 

  11. Shambharkar, D., Dhok, S., Singh, A., & Sharma, P. K. (2022). Rate-splitting multiple access for RIS-aided cell-edge users with discrete phase-shifts. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2022.3195199

    Article  Google Scholar 

  12. Do, T. N., Kaddoum, G., Nguyen, T. L., da Costa, D. B., & Haas, Z. J. (2021). Multi-RIS-aided wireless systems: Statistical characterization and performance analysis. IEEE Transactions on Communications, 69(12), 8641–8658. https://doi.org/10.1109/TCOMM.2021.3117599

    Article  Google Scholar 

  13. Yang, L., Yang, Y., da Costa, D. B., & Trigui, I. (2021). Outage probability and capacity scaling law of multiple RIS-aided networks. IEEE Wireless Communications Letters, 10(2), 256–260. https://doi.org/10.1109/LWC.2020.3026712

    Article  Google Scholar 

  14. Yang, Z., et al. (2022). Energy-efficient wireless communications with distributed reconfigurable intelligent surfaces. IEEE Transactions on Wireless Communications, 21(1), 665–679. https://doi.org/10.1109/TWC.2021.3098632

    Article  Google Scholar 

  15. Aung, P.S., Kyaw Tun, Y., Han, Z., Hong, C.S. (2022). Energy-efficiency maximization of multiple RISs-enabled communication networks by deep reinforcement learning, In ICC 2022 - IEEE International conference on communications, Seoul, Korea, Republic of, pp. 2181–2186, doi: https://doi.org/10.1109/ICC45855.2022.9838468.

  16. Han, Y., Zhang, S., Duan, L., & Zhang, R. (2020). Cooperative double-irs aided communication: Beamforming design and power scaling. IEEE Wireless Communications Letters, 9(8), 1206–1210. https://doi.org/10.1109/LWC.2020.2986290

    Article  Google Scholar 

  17. Dong, L., Wang, H.-M., Bai, J., & Xiao, H. (2021). Double intelligent reflecting surface for secure transmission with inter-surface signal reflection. IEEE Transactions on Vehicular Technology, 70(3), 2912–2916. https://doi.org/10.1109/TVT.2021.3062059

    Article  Google Scholar 

  18. Yildirim, I., Uyrus, A., & Basar, E. (2021). Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks. IEEE Transactions on Communications, 69(2), 1290–1301. https://doi.org/10.1109/TCOMM.2020.3035391

    Article  Google Scholar 

  19. Zheng, B., & Zhang, R. (2020). Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization. IEEE Wireless Commun. Lett., 9(4), 518–522.

    Article  Google Scholar 

  20. Alwazani, H., Nadeem, Q.U.A., & Chaaban, A. (2020). Channel estimation for distributed intelligent reflecting surfaces assisted multi-user MISO systems, In Proc. IEEE Globecom Workshops, December, pp. 1–6.

  21. Alnwaimi, G., & Boujemaa, H. (2021). Optimal packet length for wireless communications using reconfigurable intelligent surfaces. Telecommunication Systems, 77(4), 683–696. https://doi.org/10.1007/s11235-021-00783-0

    Article  Google Scholar 

  22. Sagias, N. C., Zogas, D. A., Karagiannidis, G. K., & Tombras, G. S. (2004). Channel capacity and second-order statistics in Weibull fading. IEEE Communications Letters, 8(6), 377–379. https://doi.org/10.1109/LCOMM.2004.831319

    Article  Google Scholar 

  23. Sagias, N. C., & Tombras, G. S. (2007). On the cascaded Weibull fading channel model. Journal of the Franklin Institute, 344(1), 1–11. https://doi.org/10.1016/j.jfranklin.2006.07.004

    Article  Google Scholar 

  24. Proakis, J. G. (2008). Digital communications (5th ed.). McGraw-Hill.

    Google Scholar 

  25. Zhang, Q., Jin, S., Wong, K.-K., Zhu, H., & Matthaiou, M. (2014). Power scaling of uplink massive MIMO systems with arbitrary-rank channel means. IEEE Journal of Selected Topics in Signal Processing, 8(5), 966–981. https://doi.org/10.1109/JSTSP.2014.2324534

    Article  Google Scholar 

  26. Hashemi, R., Ali, S., Mahmood, N. H., & Latva-aho, M. (2021). Average rate and error probability analysis in short packet communications over RIS-aided URLLC systems. IEEE Transactions on Vehicular Technology, 70(10), 10320–10334. https://doi.org/10.1109/TVT.2021.3105878

    Article  Google Scholar 

  27. Annamalai, A., Tellambura, C., & Matyjas, J. (2009). A new twist on the generalized marcum Q-function QM(a, b) with Fractional-order M and its applications, In 2009 6th IEEE consumer communications and networking conference, 2009, pp. 1–5, doi: https://doi.org/10.1109/CCNC.2009.4784840.

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RMR proposed the innovations and derived theoretical framework in the paper. RMR and VN developed the coding to simulate the system. RMR, VS prepared the final version of the paper.

Corresponding author

Correspondence to R. Mahammad Rafi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

As mentioned earlier \({\gamma }_{D,1}\) follows NCCS with following mean, variance and second order moment [24],

$${\mathbb{E}}\left[{\gamma }_{D,1}\right]={\sigma }_{{Z}_{1}}^{2}+{{\lambda }_{{Z}_{1}}}^{2},$$
(24)
$${\mathbb{V}}ar\left[{\gamma }_{D,1}\right]=2{\sigma }_{{Z}_{1}}^{4}+4{\sigma }_{{Z}_{1}}^{2}{{\lambda }_{{Z}_{1}}}^{2},$$
(25)
$${\mathbb{E}}\left[{{\gamma }_{D,1}}^{2} \right]={\mathbb{V}}ar\left[{\gamma }_{D,1}\right]+ {{\mathbb{E}}\left[{\gamma }_{D,1}\right]}^{2}=3{\sigma }_{{Z}_{1}}^{4}+6{\sigma }_{{Z}_{1}}^{2}{{\lambda }_{{Z}_{1}}}^{2}+{{\lambda }_{{Z}_{1}}}^{4},$$
(26)

where \({\lambda }_{{Z}_{1}}=\sqrt{{\left({N}_{S}{\Omega }^{\frac{2}{\beta }}{\left(\Gamma \left(1+1/\beta \right)\right)}^{2}\right)}^{2}}\) is non-centrality parameter, and \({\sigma }_{{Z}_{1}}^{2}={N}_{S}{\Omega }^{\frac{4}{\beta }}({(\Gamma \left(1+2/\beta \right))}^{2}-\Gamma {\left(\left(1+1/\beta \right)\right)}^{4})\). By substituting \({\lambda }_{{Z}_{1}}\), \({\sigma }_{{Z}_{1}}^{2}\) in Eq. (24)–(26) and after some algebraic calculations we will get mean, second order moment and variance of \({\gamma }_{D,1}\) as in Eq. 9(a)–(c).

Similarly, by substituting non-centrality parameter \({\lambda }_{{Z}_{2}}=\sqrt{{\left(2{N}_{D}{\Omega }^{\frac{2}{\beta }}{\left(\Gamma \left(1+1/\beta \right)\right)}^{2}\right)}^{2}}\) and \({\sigma }_{{Z}_{2}}^{2}=2{N}_{D}{\Omega }^{\frac{4}{\beta }}\left[{\left(\Gamma \left(1+2/\beta \right)\right)}^{2}-{\left(\Gamma \left(1+1/\beta \right)\right)}^{4}\right]\) in Eq. (27)–(29) and after doing algebraic calculations we will get the mean, second order moment and variance of \({\gamma }_{D,2}\) as in Eq. 12(a)–(c).

$${\mathbb{E}}\left[{\gamma }_{D,2}\right]={\sigma }_{{Z}_{2}}^{2}+{{\lambda }_{{Z}_{2}}}^{2},$$
(27)
$${\mathbb{V}}ar\left[{\gamma }_{D,2}\right]=2{\sigma }_{{Z}_{2}}^{4}+4{\sigma }_{{Z}_{2}}^{2}{{\lambda }_{{Z}_{2}}}^{2},$$
(28)
$${\mathbb{E}}\left[{{\gamma }_{D,2}}^{2} \right]={\mathbb{V}}ar\left[{\gamma }_{D,2}\right]+ {{\mathbb{E}}\left[{\gamma }_{D,2}\right]}^{2}=3{\sigma }_{{Z}_{2}}^{4}+6{\sigma }_{{Z}_{2}}^{2}{{\lambda }_{{Z}_{2}}}^{2}+{{\lambda }_{{Z}_{2}}}^{4}.$$
(29)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafi, R.M., Nivetha, V. & Sudha, V. Double reconfigurable intelligent surface-assisted wireless communication system for energy efficiency improvement over weibull fading channels. Telecommun Syst 83, 289–301 (2023). https://doi.org/10.1007/s11235-023-01023-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01023-3

Keywords

Navigation