Skip to main content

Advertisement

Log in

Resource allocation and BER performance analysis of NOMA based cooperative networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Resource sharing and management can significantly improve the performance and spectral efficiency of wireless systems. In power domain non-orthogonal multiple access (NOMA) systems, users share a common bandwidth for simultaneous data transmission and therfore, the spectral efficiency of the system will be improved at the expense of increased complexity. Provided proper power allocation, it is possible to detect symbols at receivers. In this paper, the downlink of a cellular system is considered where a base station (BS) communicates with two users using NOMA with the assistance of a decode-and-forward (DF) relay. In the proposed scheme, receivers combine received signals from direct and cooperative links, and decode symbols by employing successive interference cancellation (SIC). The bit error rate (BER) performance of the proposed scheme is analyzed and the optimal power allocation is also derived through a Min–Max optimization, and a closed form approximate solution is proposed for binary phase shift keying (BPSK) modulation. Furthermore, it is proved that the proposed receiver achieves full diversity order for all users for proper choice of power allocation. Simulation results also corroborate BER and diversity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. (2017). A survey on non-orthogonal multiple access for 5g networks: Research challenges and future trends. arXiv preprint. arXiv:1706.05347

  2. Chen, S., Ren, B., Gao, Q., Kang, S., Sun, S., & Niu, K. (2017). Pattern division multiple access-a novel nonorthogonal multiple access for fifth-generation radio networks. IEEE Transactions on Vehicular Technology, 66(4), 3185–3196.

    Article  Google Scholar 

  3. Chen, Z., Ding, Z., Dai, X., & Zhang, R. (2017). An optimization perspective of the superiority of noma compared to conventional oma. IEEE Trans. Signal Process, 65(19), 5191–5202.

    Article  Google Scholar 

  4. Wu, Q., Chen, W., Ng, D. W. K., & Schober, R. (2018). Spectral and energy efficient wireless powered iot networks: Noma or tdma? IEEE Transactions on Vehicular Technology.

  5. Ding, Z., Zhao, Z., Peng, M., & Poor, H. V. (2017). On the spectral efficiency and security enhancements of noma assisted multicast-unicast streaming. IEEE Transactions on Communications, 65(7), 3151–3163.

    Article  Google Scholar 

  6. Islam, S. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2017). Power-domain non-orthogonal multiple access (noma) in 5g systems: Potentials and challenges. IEEE Communications Surveys & Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  7. Yue, X., Qin, Z., Liu, Y., Kang, S., & Chen, Y. (2018). A unified framework for non-orthogonal multiple access. IEEE Transactions on Communications,

  8. Nguyen, V.-D., Tuan, H. D., Duong, T. Q., Poor, H. V., & Shin, O.-S. (2017). Precoder design for signal superposition in mimo-noma multicell networks. IEEE Journal on Selected Areas in Communications, 35(12), 2681–2695.

    Article  Google Scholar 

  9. Yuan, L., Pan, J., Yang, N., Ding, Z., & Yuan, J. (2018). Successive interference cancellation for ldpc coded non-orthogonal multiple access systems. IEEE Transactions on Vehicular Technology.

  10. Verdu S. (1998). et al., Multiuser detection.Cambridge university press.

  11. Gupta, A. S., & Singer, A. (2007). Successive interference cancellation using constellation structure. IEEE Transactions on Signal Processing, 55(12), 5716–5730.

    Article  Google Scholar 

  12. Ding, Z., Fan, P., & Poor, H. V. (2016). Impact of user pairing on 5g nonorthogonal multiple-access downlink transmissions. IEEE Trans. Vehicular Technology, 65(8), 6010–6023.

    Article  Google Scholar 

  13. Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5g systems: Tractability and computation. IEEE Transactions on Wireless Communications, 15(12), 8580–8594.

    Article  Google Scholar 

  14. Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9), 3037–3063.

    Article  Google Scholar 

  15. Do, T. N., da Costa, D. B., Duong, T. Q., & An, B. (2018). Improving the performance of cell-edge users in noma systems using cooperative relaying. IEEE Transactions on Communications, 66(5), 1883–1901.

    Article  Google Scholar 

  16. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information theory, 50(12), 3062–3080.

    Article  Google Scholar 

  17. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. part i. system description. IEEE Transactions on communications, 51(11), 1927–1938.

    Article  Google Scholar 

  18. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2018). Exploiting full/half-duplex user relaying in noma systems. IEEE Transactions on Communications, 66(2), 560–575.

    Article  Google Scholar 

  19. Xu, M., Ji, F., Wen, M., & Duan, W. (2016). Novel receiver design for the cooperative relaying system with non-orthogonal multiple access. IEEE Communications Letters, 20(8), 1679–1682.

    Article  Google Scholar 

  20. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5g systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  21. Fang, F., Zhang, H., Cheng, J., & Leung, V. C. (2016). Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Transactions on Communications, 64(9), 3722–3732.

    Article  Google Scholar 

  22. Sedaghat, M. A., & Müller, R. R. (2018). On user pairing in uplink noma. IEEE Transactions on Wireless Communications, 17(5), 3474–3486.

    Article  Google Scholar 

  23. Liang, W., Ding, Z., Li, Y., & Song, L. (2017). User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Transactions on Communications, 65(12), 5319–5332.

    Article  Google Scholar 

  24. Wang, T., Cano, A., Giannakis, G. B., & Laneman, J. N. (2007). High-performance cooperative demodulation with decode-and-forward relays. IEEE Transactions on Communications, 55(7), 1427–1438.

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Olfat.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of proposition 1

Since \(\gamma _{min}=min \{\gamma _{SR}, \gamma _{RD} \}\), \(\gamma _{min}\le \gamma _{RD}\). Hence, an upper bound for (33) can be derived as,

$$\begin{aligned} P_{1}{} & {} \le E\bigg \{Q(x\sqrt{2(\gamma _{SD}+\gamma _{min})})\bigg \} \\{} & {} \le \int _{0} ^{\infty } \int _{0} ^{\infty }\int _{0} ^{\infty }\exp (-x^2(\gamma _{SD}+\gamma _{min})) f_{\gamma _{SD}}f_{\gamma _{SR}}f_{\gamma _{RD}} \end{aligned}$$
$$\begin{aligned}{} & {} d\gamma _{SD}d\gamma _{SR} d\gamma _{RD}{=} \frac{1}{{\bar{\gamma }}_{SD}\left[ x^2{+}\frac{1}{{\bar{\gamma }}_{SD}}\right] } \int _{0} ^{\infty } \int _{0} ^{\infty }\exp ({-}x^2\gamma _{min})\nonumber \\{} & {} \qquad \times \frac{1}{\bar{\gamma _{SR}}} \exp \left( -\frac{\gamma _{SR}}{\bar{\gamma _{SR}}}\right) \frac{1}{\bar{\gamma _{RD}}} \exp \left( -\frac{\gamma _{RD}}{\bar{\gamma _{RD}}}\right) d\gamma _{SR} d\gamma _{RD}\nonumber \\{} & {} \quad = \frac{1}{\bar{\gamma _{SD}}\left[ x^2+\frac{1}{\bar{\gamma _{SD}}}\right] }~ \frac{1}{x^2\bar{\gamma _{RD}}\bar{\gamma _{SR}}+\bar{\gamma _{SR}}+\bar{\gamma _{RD}}}\nonumber \\{} & {} \qquad \times \frac{x^2\bar{\gamma _{SR}}^2+[x^2+1]\bar{\gamma _{SR}}+\bar{\gamma _{RD}}}{x^2\bar{\gamma _{SR}}+1} \end{aligned}$$
(42)

When \(\bar{\gamma }\) tends to infinity, the average of proposition 1 decays with order of two.

Appendix B

Proof of proposition 2

We can claim \(P_2<Y+U\), where

$$\begin{aligned} \begin{aligned}&Y=\int _{0} ^{\infty } \int _{0} ^{\infty } \int _{\frac{z\gamma _{min}}{y}} ^{\infty } \frac{1}{2} \exp (-x\gamma _{SR}) \frac{1}{2}\\&\quad \times \exp \left( -\frac{(y\gamma _{SD}-z\gamma _{min})^2}{\gamma _{SD}+\gamma _{min}}\right) \\&\quad \times f_{\gamma _{SD}} f_{\gamma _{SR}}f_{\gamma _{RD}} d\gamma _{SD} d\gamma _{RD} d\gamma _{SR}\\&\quad U=\int _{0} ^{\infty } \int _{0} ^{\infty } \int _{0} ^{\frac{z\gamma _{min}}{y}} \frac{1}{2} \exp (-x\gamma _{SR})\\&\quad f_{\gamma _{SD}} f_{\gamma _{SR}}f_{\gamma _{RD}} d\gamma _{SD} d\gamma _{SR} d\gamma _{RD} \end{aligned} \end{aligned}$$
(43)

For calculating Y we use this inequality.

$$\begin{aligned} \begin{aligned}&\int _{\frac{z\gamma _{min}}{y}} ^{\infty } \exp \left( -\frac{(y\gamma _{SD}-z\gamma _{min})^2}{\gamma _{SD}+\gamma _{min}}\right) \exp \left( -\frac{\gamma _{SD}}{\bar{\gamma _{SD}}}\right) d\gamma _{SD}\le \\&\quad \exp \left( -\gamma _{min}\left[ z^2-\frac{(y+z)^4}{16(y^2+\frac{1}{\bar{\gamma _{SD}}})}\right] \right) \times \frac{\bar{\gamma _{SD}}}{(y^2\bar{\gamma _{SD}}+1)^2}\\&\quad \times \left[ 1+y^2\bar{\gamma _{SD}}+\frac{(y+z)^2}{4}\sqrt{(1+y^2\bar{\gamma _{SD}})\gamma _{min}\bar{\gamma _{SD}}\pi }\right] \end{aligned}\nonumber \\ \end{aligned}$$
(44)

The upper bound of this inequality is drawn using,

$$\begin{aligned} \begin{aligned}&\frac{\left( y\gamma _{SD}-\gamma _{min}\right) ^2}{\gamma _{SD}+\gamma _{min}}\\&\quad \le y^2\gamma _{SD}+z^2\gamma _{min}-\frac{(y+z)^2}{2}\sqrt{\gamma _{SD}\gamma _{min}} \end{aligned} \end{aligned}$$
(45)

After applying this inequality and integrating over different regions, we arrive at

$$\begin{aligned} \begin{aligned}&Y\le \frac{1}{4\bar{\gamma _{SR}}\bar{\gamma _{RD}}(y^2\bar{\gamma _{SD}}+1)}~\bigg [ \frac{\bar{\gamma _{SR}}}{x\bar{\gamma _{SR}}+1}\times \\&\quad \frac{16(y^2\bar{\gamma _{SD}}+1)\bar{\gamma _{SR}}\bar{\gamma _{RD}}}{\bar{\gamma _{SR}}\bar{\gamma _{RD}}(\bar{\eta _{1}\gamma _{SD}}+16\eta _{2})+16(y^2\bar{\gamma _{SD}}+1)[\bar{\gamma _{SR}}+\bar{\gamma _{RD}}]}\\&\quad + \frac{16(y^2\bar{\gamma _{SD}}+1)\bar{\gamma _{SR}}\bar{\gamma _{RD}}}{\eta _{1} \bar{\gamma _{SD}}\bar{\gamma _{SR}}+16(y^2\bar{\gamma _{SD}}+\eta _{2}\bar{\gamma _{SR}}+1)}\bigg ]\\&\quad +\frac{(y+z)^2\pi \sqrt{(1+y^2\bar{\gamma _{SD}})\bar{\gamma _{SD}}}}{32\bar{\gamma _{SR}}(y^2\bar{\gamma _{SD}}+1)^2}\frac{1+\bar{\gamma _{RD}}}{\bar{\gamma _{RD}}}\\&\quad \times \left[ \frac{(y^2\bar{\gamma _{SD}}+1)\bar{\gamma _{SD}}\bar{\gamma _{RD}}}{\bar{\gamma _{SD}}\bar{\gamma _{RD}}(\frac{\eta _{1}}{16}\bar{\gamma _{SD}}+y^2\eta _{2})+(y^2\bar{\gamma _{SD}}+1)[\bar{\gamma _{RD}}+\bar{\gamma _{SD}}]}\right] ^\frac{2}{3} \end{aligned} \end{aligned}$$
(46)

where \(\eta _{1}=16y^2(x+z^2)-(y+z)^4\) and \(\eta _{2}=x+z^2\).

After calculating the average over different parameters,

$$\begin{aligned} \begin{aligned}&U=\int _{0} ^{\infty } \int _{0} ^{\infty } \int _{0} ^{\frac{z\gamma _{min}}{y}} \frac{1}{2} \exp (-\gamma _{SR} x)\\&\qquad \times \frac{1}{\gamma _{SR}} \exp (-\frac{\gamma _{SR}}{\bar{\gamma _{SR}}}) \frac{1}{\gamma _{RD}} \exp \left( -\frac{\gamma _{RD}}{\bar{\gamma _{RD}}}\right) \\&\qquad \times \frac{1}{\gamma _{SD}} \exp \left( -\frac{\gamma _{SD}}{\bar{\gamma _{SD}}}\right) d\gamma _{SD} d\gamma _{RD} d\gamma _{SR}=\\&\qquad \frac{z\bar{\gamma _{SR}}\bar{\gamma _{RD}}}{2\xi (\bar{\gamma _{SR}}x+1)}, \end{aligned} \end{aligned}$$
(47)

where \(\xi =z\bar{\gamma _{SR}}\bar{\gamma _{RD}}+\bar{\gamma _{SD}}[xy\bar{\gamma _{SR}}\bar{\gamma _{RD}}+y\bar{\gamma _{RD}}+y\bar{\gamma _{SR}}]\).

If \(\eta _{1}\ne 0\), we can claim that \(P_2\) decays with order of two, when \(\bar{\gamma }\) tends to infinity.

Appendix C

Proof of proposition 3

Based on (20) and (31), we should note that the possible values for x,y and z are:

$$\begin{aligned} x, y, z:~~~\alpha +\beta , \alpha -\beta , \beta \end{aligned}$$

There are two general classes which require satisfaction of proposition 2 condition. The first class is attributed to the terms in which \(y=z\). For this class, the condition of proposition 2 will be reduced to \(16xy^2\). Since the coefficients of x and y are positive the condition will be always satisfied.

For the second class, there are two terms which require the satisfaction of the condition \(16y^2(x+z^2)-(y+z)^4>0\). The coefficients of the first term are \(x=\alpha +\beta \), \(y=\alpha -\beta \), \(z=\alpha +\beta \). We consider a scenario in which \(\alpha =k \beta \). After some calculations, the inequality of proposition 2 can be written as:

$$\begin{aligned} k^3-(1+2\beta )k^2-k+1+\beta >0 \end{aligned}$$
(48)

To find an approximate solution for this inequality, we limit the search region by considering the equation below,

$$\begin{aligned} k^3-(1+2\beta )k^2-k>0 \end{aligned}$$
(49)

If the variable k satisfies (49), the equation (48) will be satisfied too. By solving this inequality, the valid value for k can be calculated as (\(k>0\)):

$$\begin{aligned} k>\frac{(2\beta +1)+\sqrt{(2\beta +1)^2+4}}{2} \end{aligned}$$
(50)

Based on power assignment constraint (\(\alpha ^2+\beta ^2=1\)), \(\beta \) can be computed as,

$$\begin{aligned} \beta =\sqrt{\frac{1}{1+k^2}} \end{aligned}$$

By applying a recursive calculation with initial value of \(\beta =1\), the approximate solution of (49) will be,

$$\begin{aligned} k=2.2547,~ \beta =0.4054 \end{aligned}$$

The coefficients of the second term are \(x=\alpha -\beta \), \(y=\alpha -\beta \), \(z=\alpha +\beta \). By substituting the coefficients, the resulting inequality will be,

$$\begin{aligned} k^3-(3-2\beta )k^2+3k-1+\beta >0 \end{aligned}$$
(51)

Since \(k>1\), \(k-1+\beta \) is positive; we can use the inequality below,

$$\begin{aligned} k^3-(3-2\beta )k^2+2k>0 \end{aligned}$$
(52)

The delta function of this inequality is,

$$\begin{aligned} \delta =(3-2\beta )^2-8 \end{aligned}$$

Hence, if \(k>2.2547\), both of (48) and (51) inequalities will be true.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olfat, A. Resource allocation and BER performance analysis of NOMA based cooperative networks. Telecommun Syst 83, 227–239 (2023). https://doi.org/10.1007/s11235-023-01014-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01014-4

Keywords

Navigation