Skip to main content
Log in

Subspace based DOA estimation of DS-CDMA signals

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents a subspace blind method to estimate the direction of arrival of direct sequence code division multiple access signals in a multipath fading environment. The proposed method is based on signal/noise subspace approach. For enhancing the results, the problem is formulated based on both signal and noise subspaces to exploit structures of desired signal, self interference and multiple access interference simultaneously. The main idea in this paper is based on fitting the extended subspace spanned by the desired signature waveform in all different paths into the estimated extended signal subspace. The proposed method is blind in the sense that it utilizes only the desired user’s code and its corresponding path delays. The performance of the proposed method is compared to the Cramer–Rao lower bound. We also propose a method for estimating relative power of different paths in multipath code division multiple access signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reed, J. H., & Tripathi, N. (2014). (2014) Cellular communications: A comprehensive and practical guide. New York: Wiley.

    Google Scholar 

  2. Liu, Y., Yang, L.-L., & Hanzo, L. (2017). Spatial modulation aided sparse code-division multiple access. IEEE Transactions on Wireless Communications, 17(3), 1474–1487.

    Article  Google Scholar 

  3. Verdu, S., et al. (1998). Multiuser detection. Cambridge University Press.

    Google Scholar 

  4. Verdu, S. (1986). Minimum probability of error for asynchronous gaussian multiple-access channels. IEEE Transactions on Information Theory, 32(1), 85–96.

    Article  Google Scholar 

  5. Lupas, R., & Verdu, S. (1990). Near-far resistance of multiuser detectors in asynchronous channels. IEEE Transactions on Communications, 38(4), 496–508.

    Article  Google Scholar 

  6. Lupas, R., & Verdu, S. (1989). Linear multiuser detectors for synchronous code-division multiple-access channels. IEEE Transactions on Information Theory, 35(1), 123–136.

    Article  Google Scholar 

  7. Varanasi, M. K., & Aazhang, B. (1990). Multistage detection in asynchronous code-division multiple-access communications. IEEE Transactions on Communications, 38(4), 509–519.

    Article  Google Scholar 

  8. Madhow, U., & Honig, M. L. (1994). Mmse interference suppression for direct-sequence spread-spectrum CDMA. IEEE Transactions on Communications, 42(12), 3178–3188.

    Article  Google Scholar 

  9. Miller, S. L. (1995). An adaptive direct-sequence code-division multiple-access receiver for multiuser interference rejection. IEEE Transactions on Communications, 43(2/3/4), 1746–1755.

    Article  Google Scholar 

  10. Honig, M., Madhow, U., & Verdu, S. (1995). Blind adaptive multiuser detection. IEEE Transactions on Information Theory, 41(4), 944–960.

    Article  Google Scholar 

  11. Poor, H. V., & Wang, X. (1997). Code-aided interference suppression for DS/CDMA communications II. Parallel blind adaptive implementations. IEEE Transactions on Communications, 45(9), 1112–1122.

    Article  Google Scholar 

  12. Wang, X., & Poor, H. V. (1998). Blind multiuser detection: A subspace approach. IEEE Transactions on Information Theory, 44(2), 677–690.

    Article  Google Scholar 

  13. Bernstein, X., Haimovich, A.: Space-time processing for increased capacity of wireless cdma. In Proceedings Of ICC/supercomm’96-international conference on communications (Vol. 1, pp. 597–601) (1996). IEEE.

  14. Wong, T. F., Lok, T. M., Lehnert, J. S., & Zoltowski, M. D. (1998). A linear receiver for direct-sequence spread-spectrum multiple-access systems with antenna arrays and blind adaptation. IEEE Transactions on Information Theory, 44(2), 659–676.

    Article  Google Scholar 

  15. Kapoor, S., Gollamudi, S., Nagaraj, S., & Huang, Y.-F. (1999). Adaptive multiuser detection and beamforming for interference suppression in CDMA mobile radio systems. IEEE Transactions on Vehicular Technology, 48(5), 1341–1355.

    Article  Google Scholar 

  16. Wang, R., & Blostein, S. D. (2001). A spatial-temporal decorrelating receiver for CDMA systems with base-station antenna arrays. IEEE Transactions on Communications, 49(2), 329–340.

    Article  Google Scholar 

  17. Olfat, A., & Nader-Esfahani, S. (2004). New receiver for multiuser detection of CDMA signals with antenna arrays. IEE Proceedings-Communications, 151(2), 143–151.

    Article  Google Scholar 

  18. Reynolds, D., Wang, X., & Poor, H. V. (2002). Blind adaptive space-time multiuser detection with multiple transmitter and receiver antennas. IEEE Transactions on Signal Processing, 50(6), 1261–1276.

    Article  Google Scholar 

  19. Sfar, S., Murch, R. D., & Letaief, K. B. (2003). Layered space-time multiuser detection over wireless uplink systems. IEEE Transactions on Wireless Communications, 2(4), 653–668.

    Article  Google Scholar 

  20. De Lamare, R., & Sampaio-Neto, R. (2011). Blind space-time joint channel and direction of arrival estimation for DS-CDMA systems. IET Signal Processing, 5(1), 33–39.

    Article  Google Scholar 

  21. Zheng, Z., Wang, W.-Q., Meng, H., So, H. C., & Zhang, H. (2018). Efficient beamspace-based algorithm for two-dimensional DOA estimation of incoherently distributed sources in massive mimo systems. IEEE Transactions on Vehicular Technology, 67(12), 11776–11789.

    Article  Google Scholar 

  22. Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 13(4), 67–94.

    Article  Google Scholar 

  23. Wang, F., Tian, Z., Leus, G., & Fang, J. (2021). Direction of arrival estimation of wideband sources using sparse linear arrays. IEEE Transactions on Signal Processing, 69, 4444–4457.

    Article  Google Scholar 

  24. Xia, N., Li, B., & Wang, J. (2020). A spatial sparse method for mobile localization of multiple co-channel transmitters. IEEE Wireless Communications Letters, 9(9), 1408–1411.

    Article  Google Scholar 

  25. Ahmed, N., Wang, H., Raja, M. A. Z., Ali, W., Zaman, F., Khan, W. U., & He, Y. (2021). Performance analysis of efficient computing techniques for direction of arrival estimation of underwater multi targets. IEEE Access, 9, 33284–33298.

    Article  Google Scholar 

  26. Stoica, P., & Gershman, A. B. (1999). Maximum-likelihood DOA estimation by data-supported grid search. IEEE Signal Processing Letters, 6(10), 273–275.

    Article  Google Scholar 

  27. Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  28. Roy, R., & Kailath, T. (1989). Esprit-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7), 984–995.

    Article  Google Scholar 

  29. Tsoulos, G. V. (2000). Adaptive antennas for wireless communications. Wiley-IEEE Press.

    Google Scholar 

  30. Chiang, C.-T., & Chang, A.-C. (2003). DOA estimation in the asynchronous DS-CDMA system. IEEE Transactions on Antennas and Propagation, 51(1), 40–47.

    Article  Google Scholar 

  31. Lu, L., & Wu, H.-C. (2011). Robust expectation-maximization direction-of-arrival estimation algorithm for wideband source signals. IEEE Transactions on Vehicular Technology, 60(5), 2395–2400.

    Article  Google Scholar 

  32. D’Amico, A. A., Mengali, U., & Morelli, M. (2004). DOA and channel parameter estimation for wideband CDMA systems. IEEE Transactions on Wireless Communications, 3(6), 1942–1947.

    Article  Google Scholar 

  33. Van Der Veen, A.-J., Deprettere, E. F., & Swindlehurst, A. L. (1993). Subspace-based signal analysis using singular value decomposition. Proceedings of the IEEE, 81(9), 1277–1308.

    Article  Google Scholar 

  34. Beygi, M. A., & Olfat, A. (2010). Subspace based direction of arrival estimation of DS-CDMA signals using orthogonal projection. Signal Processing, 90(3), 926–932.

    Article  Google Scholar 

  35. Proakis, J. G., & Salehi, M. (2001). Digital communications (Vol. 4). McGraw-Hill.

    Google Scholar 

  36. Pillai, S.U. (1989) Array signal processing: New techniques for direction finding and spectrum estimation. Technical report, Polytechnic Univ Brooklyn Ny Dept Of Electrical Engineering And Computer Science.

  37. Van Trees, H. L. (2004). Detection, estimation, and modulation theory. Part I detection, estimation, and linear modulation theory. Wiley.

    Google Scholar 

  38. Wax, M., & Kailath, T. (1985). Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(2), 387–392.

    Article  Google Scholar 

  39. Strang, G. (2006). Linear algebra and its applications. Thomson, Brooks/Cole.

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Olfat.

Ethics declarations

Conflicts of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

6 Appendix

6 Appendix

Using (7), \(z_k^m(i,j)\) can be written as (55),

$$\begin{aligned} z_k^m(i,j)= & {} \sum \limits _{\hat{i}=0}^{Q-1}\sum \limits _{\hat{k}=1}^{K} A_{\hat{k}}b_{\hat{k}}(\hat{i})\sum \limits _{l=1}^{L}a_{\theta _{\hat{k}l,m}}g_{\hat{k}l} r_{s_{\hat{k}}\psi }((i-\hat{i})T_b\nonumber \\{} & {} +jT_c-(\tau _{\hat{k}l}-\tau _{k1}))\nonumber \\{} & {} + \underbrace{\sigma r_{n_{m}\psi }(iT_b+jT_c+\tau _{k1})}_{n_k^m(i,j)} \end{aligned}$$
(55)

where \(a_{\theta _{kl},m}\) is mth element of \(\varvec{a}_{\theta _{kl}}\) and \(r_{fg}(\tau )\) is the cross correlation function between f and g, which is defined as below:

$$\begin{aligned} r_{fg}(\tau )=\int \limits _{0}^{T_c}f(t+\tau )g^*(t)\textrm{d}t. \end{aligned}$$
(56)

To be more specific, \(z_k^m(i,j)\) in (55) can be broken down into 4 terms in (57). The first three terms in (57) is related to kth user and the 4th term is effect of other users in filter output.

$$\begin{aligned}{} & {} z_k^m(i,j){}={} A_kb_k(i-1)\nonumber \\{} & {} \quad \sum _{l=2}^{L}a_{\theta _{kl,m}}g_{kl}\,r_{s_{k}\psi }(T_b+jT_c-(\tau _{kl}-\tau _{k1}))\nonumber \\{} & {} \quad {+}\,A_kb_k(i)\sum _{l=1}^{L}a_{\theta _{kl,m}}g_{kl}\,r_{s_{k}\psi }(jT_c-(\tau _{kl}-\tau _{k1}))\nonumber \\{} & {} \quad {+}\,A_kb_k(i+1)\sum _{l=1}^{L-1}a_{\theta _{kl,m}}g_{kl}\,r_{s_{k}\psi }(-T_b+jT_c-(\tau _{kl}-\tau _{k1}))\nonumber \\{} & {} \quad {+}\,\mathop {\sum \sum }_{(\hat{i},\hat{k})\notin \{(i-1,k),(i,k),(i+1,k)\}}\nonumber \\{} & {} \quad \underbrace{A_{\hat{k}}b_{\hat{k}}(\hat{i})\sum \limits _{l=1}^{L}a_{\theta _{\hat{k}l,m}}g_{\hat{k}l} \,r_{s_{\hat{k}}\psi }((i-\hat{i})T_b+jT_c-(\tau _{\hat{k}l}-\tau _{k1}))}_{f_m(\hat{i},\hat{k},j)}\nonumber \\{} & {} \quad {+}\,n_k^m(i,j) \end{aligned}$$
(57)

Therefore, \(\varvec{z}_k^m(i)\) can be expressed as

$$\begin{aligned} \varvec{z}_k^m(i)= & {} A_kb_k(i-1)\sum _{l=2}^{L}a_{\theta _{kl,m}}g_{kl}\varvec{c}_l^{k,1}\nonumber \\{} & {} {+}\,A_kb_k(i)\sum _{l=1}^{L}a_{\theta _{kl,m}}g_{kl}\varvec{c}_l^{k,2}\nonumber \\{} & {} {+}\,A_kb_k(i+1)\sum _{l=1}^{L-1}a_{\theta _{kl,m}}g_{kl}\varvec{c}_l^{k,3}\nonumber \\{} & {} {+}\,\mathop {\sum \sum }_{(\hat{i},\hat{k})\notin \{(i-1,k),(i,k),(i+1,k)\}}\varvec{f}_m(\hat{i},\hat{k})\nonumber \\{} & {} {+}\,\varvec{n}_k^m(i) \end{aligned}$$
(58)

where \(\varvec{f}_m(\hat{i},\hat{k})=[f_m(\hat{i},\hat{k},0),...,f_m(\hat{i},\hat{k},N_{\text {ex}}-1)]^T\), \(\varvec{n}_k^m(i)=[n_k^m(i,0),...,n_k^m(i,N-1)]^T\) and \(\varvec{c}_l^{k,1}\), \(\varvec{c}_l^{k,2}\) and \(\varvec{c}_l^{k,3}\) are column vectors, which can be interpreted as augmented version of signature waveforms to produce pattern of the whole frame defined as (59)-(61).

figure d

where \(\gamma = \dfrac{\tau _{kl}-\tau _{k1}}{T_c} \). Therefore it can be seen that \(\varvec{z}_k(i)\) defined in (12) can be written as

$$\begin{aligned} \varvec{z}_k(i)= & {} A_kb_k(i-1)\sum _{l=2}^{L}g_{kl}\varvec{a}_{\theta _{kl}}\otimes \varvec{c}_l^{k,1}\nonumber \\{} & {} {+}\,A_kb_k(i)\sum _{l=1}^{L}g_{kl}\varvec{a}_{\theta _{kl}}\otimes \varvec{c}_l^{k,2}\nonumber \\{} & {} {+}\,A_kb_k(i+1)\sum _{l=1}^{L-1}g_{kl}\varvec{a}_{\theta _{kl}}\otimes \varvec{c}_l^{k,3}\nonumber \\{} & {} {+}\,\mathop {\sum \sum }_{(\hat{i},\hat{k})\notin \{(i-1,k),(i,k),(i+1,k)\}}\varvec{f}(\hat{i},\hat{k})\nonumber \\{} & {} {+}\,\varvec{n}_k(i) \end{aligned}$$
(62)

where \(\otimes \) is the Kronecker product and \(\varvec{f}(\hat{i},\hat{k})=[\varvec{f}_1(\hat{i},\hat{k}),...,\varvec{f}_M(\hat{i},\hat{k})]^T\) and is interference of other users in \(\varvec{z}_k(i)\) (MAI) and \(\varvec{n}_k(i)=[\varvec{n}_k^1(i),...,\varvec{n}_k^M(i)]^T\). As aforementioned above, the first three terms in (62) is the contribution of kth user in \(\varvec{z}_k(i)\). Therefore mth element of \(\varvec{z}_k(i)\) in (62), can be written as (63). From (63), the extended vector \(\varvec{z}_k(i)\) can be written as (64).

$$\begin{aligned}{} & {} \varvec{z}_k^m(i){}={}b_k(i)A_k \lbrace g_{k1} a_{\theta _{k1,m}} \varvec{c}^{k,2}_1 + g_{k2} a_{\theta _{k2,m}} \varvec{c}^{k,2}_2 +... \nonumber \\{} & {} \quad + g_{kL} a_{\theta _{kL,m}} \varvec{c}^{k,2}_L \rbrace \nonumber \\{} & {} \quad {+}\,b_k(i-1)A_k \lbrace g_{k2} a_{\theta _{k2,m}} \varvec{c}^{k,1}_2 + g_{k3} a_{\theta _{k3,m}} \varvec{c}^{k,1}_3 +... \nonumber \\{} & {} \quad + g_{kL} a_{\theta _{kL,m}} \varvec{c}^{k,1}_L \rbrace \nonumber \\{} & {} \quad {+}\,b_k(i+1)A_k \lbrace g_{k1} a_{\theta _{k1,m}} \varvec{c}^{k,3}_1 \nonumber \\{} & {} \quad + g_{k2} a_{\theta _{k2,m}} \varvec{c}^{k,3}_2 +... + g_{k(L-1)} a_{\theta _{k(L-1),m}} \varvec{c}^{k,3}_{L-1} \rbrace \nonumber \\{} & {} \quad {+}\,\mathop {\sum \sum }_{(\hat{i},\hat{k}) \notin \{(i-1,k),(i,k),(i+1,k)\}}\varvec{f}_m(\hat{i},\hat{k})\nonumber \\{} & {} \quad {+}\,\varvec{n}_k^m(i) \end{aligned}$$
(63)
(64)

Finally from 64, the decomposition of (62) can be reformulated as following form:

$$\begin{aligned} \varvec{z}_k(i){}={}b_k(i)\varvec{u}_k+\underbrace{\ldots }_{\text {the rest of terms}} \end{aligned}$$
(65)

where \(\varvec{u}_k\) is expressed as below:

$$\begin{aligned} \varvec{u}_k&{}={}&B_k\varvec{\alpha } \end{aligned}$$
(66)

where \(B_k\) and \(\varvec{\alpha }\) is defined as (15) and (16) respectively.

Therefore (65) can be written as (67).

$$\begin{aligned} \varvec{z}_k(i)= & {} b_k(i)\varvec{u}_k(i)+b_k(i-1)\varvec{u}_k(i-1)+b_k(i+1)\varvec{u}_k(i+1)\nonumber \\{} & {} {+}\,\mathop {\sum \sum }_{(\hat{i},\hat{k})\notin \{(i-1,k),(i,k),(i+1,k)\}}\varvec{f}(\hat{i},\hat{k})\nonumber \\{} & {} {+}\,\varvec{n}_k(i) \end{aligned}$$
(67)

Using the whiteness assumption (8), the covariance matrix of noise can be calculated as following:

$$\begin{aligned} \text {cov}(\varvec{n}_k(i),\varvec{n}_{k^\prime }(i)){}={}E\{\varvec{n}_k(i)\varvec{n}_{k^\prime }(i)^H\}\nonumber \\ {=}\, {\left\{ \begin{array}{ll} I_M \otimes F_k^{k^{\prime }}, \, \text {if} \, |\tau _{k1}-\tau _{k^{\prime }1}|< T_b \\ 0, \text {if} |\tau _{k1}-\tau _{k^{\prime }1}|\ge T_b \end{array}\right. } \end{aligned}$$
(68)

where

$$\begin{aligned} F_k^{k^{\prime }}(s,q)= & {} E\{n_k^m(i,s)n_{k^\prime }^{m*}(i,q)\}\nonumber \\= & {} \sigma ^2\int \limits _{0}^{T_c}\psi ^*(t)\psi (t-(\tau _{k^\prime 1}-\tau _{k1})-(q-s)T_c)\textrm{d}t\nonumber \\= & {} \sigma ^2r_{\psi \psi }((\tau _{k1}-\tau _{k^\prime 1})+(s-q)T_c) \end{aligned}$$
(69)

By these results we can find the autocorrelation of the noise vector \(\varvec{n}_k(i)\) as following:

$$\begin{aligned} E\{\varvec{n}_k(i)\varvec{n}_k(i^\prime )^H\}={\left\{ \begin{array}{ll} \dfrac{\sigma ^2}{N}I_{MN_{ex}}, \text {if} i=i^\prime \\ 0, \text {if} i\ne i^\prime . \end{array}\right. } \end{aligned}$$
(70)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemian, A., Olfat, A. & Amiri, M. Subspace based DOA estimation of DS-CDMA signals. Telecommun Syst 83, 17–28 (2023). https://doi.org/10.1007/s11235-023-01000-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01000-w

Keywords

Navigation