Skip to main content
Log in

Modeling of spectrum sharing using ITLinQ scheme in device-to-device networks with full-duplex relays

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The wide utilization of frequency spectrum sharing causes problems such as interference as the result of active links’ effects on each other. One of the proposed methods to decrease the interference in device-to-device networks is information-theoretic links scheduling (ITLinQ), where it schedules links by using information theory optimally conditions. In this paper, the idea of simultaneous using frequency sharing and reliable full-duplex relaying (FDR) is proposed. Although FDR causes self-interference when the same frequency spectrum is used for reception and transmission at the relays simultaneously, it is shown that the proposed system can increase the transmission rate and coverage area. Moreover, a relay selection scheme to select relays, and a power allocation mechanism between sources and relays to allocate appropriate power are presented. This is investigated by an analytical study to validate the superiority of the proposed method over the ITLinQ scheme in improving the total rate in the network. In addition, the simulation results confirm that by using FDR with the ITLinQ scheme, the better achievable sum-rate of users is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, Z., Gui, J., Xiong, N., & Zeng, Z. (2019). Energy-efficient resource sharing scheme with out-band D2D relay-aided communications in C-RAN-based underlay cellular networks. IEEE Access, 7, 19125–19142

    Article  Google Scholar 

  2. Poulakis, M. I., Gotsis, A. G., & Alexiou, A. (2018). Multicell device-to-device communication: A spectrum-sharing and densification study. IEEE Vehicular Technology Magazine, 13(1), 85–96

    Article  Google Scholar 

  3. Anbiyaei, M., Faez, K., & Najimi, M. (2019). Energy-Efficient resource allocation for device-to-device underlay communications in cellular networks. IET Signal Processing, 13(6), 633–639

    Article  Google Scholar 

  4. Yang, T., Cheng, X., Shen, X., Chen, S., & Yang, L. (2017). QoS-aware interference management for vehicular D2D relay networks. Journal of Communications and Information Networks, 2(2), 75–90

    Article  Google Scholar 

  5. Naderializadeh, N., & Avestimehr, A. S. (2014). ITLinQ: A new approach for spectrum sharing in device-to-device communication systems. IEEE Journal on Selected Areas in Communications, 32(6), 1139–1151

    Article  Google Scholar 

  6. Mungara, R. K., Zhang, X., Lozano, A., & Heath, R. W. (2016). Analytical characterization of ITLinQ: Channel allocation for device-to-device communication networks. IEEE Transactions on Wireless Communications, 15(5), 3603–3615

    Article  Google Scholar 

  7. Naderializadeh, N., Kao, D. T., & Avestimehr, A. S. (2014). How toutilize caching to improve spectral efficiency in device-to-device wireless networks. IEEE In 2014 52nd annual Allerton conference on communication, control, and computing (Allerton), Monticello, IL, USA (pp. 415–422).

  8. Mungara, R. K., Zhang, X., Lozano, A., & Heath, R. W. (2014). On the spatial spectral efficiency of ITLinQ. In IEEE 2014 48th Asilomar conference on signals, systems and computers, Pacific Grove, CA, USA (pp. 1806–1810).‏

  9. Mungara, R. K., Zhang, X., Lozano, A., & Heath, R. W. (2015). Performance evaluation of ITLinQ and FlashLinQ for overlaid device-to-device communication. In 2015 IEEE international conference on communication workshop (ICCW), London, UK (pp. 596–601).‏

  10. Naderializadeh, N., & Avestimehr, A. S. (2014). ITLinQ: A new approach for spectrum sharing. In 2014 IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 327–333).

  11. Lee, K., Kang, J. W., & Kim, S. H. (2015, October). On scheduling with outdated channel state information in ITLinQ for D2D networks. In 2015 IEEE International Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea (pp. 363–365).

  12. Joudeh, H., & Clerckx, B. (2018). On the optimality of treating interference as noise for interfering multiple access channels. In 2018 IEEE international symposium on information theory (ISIT) (pp. 1530–1534).

  13. Geng, C., Naderializadeh, N., Avestimehr, A. S., & Jafar, S. A. (2015). On the optimality of treating interference as noise. IEEE Transactions on Information Theory, 61(4), 1753–1767

    Article  Google Scholar 

  14. Sun, H., & Jafar, S. A. (2016). On the optimality of treating interference as noise for k-user parallel Gaussian interference networks. IEEE Transactions on Information Theory, 62(4), 1911–1930

    Article  Google Scholar 

  15. Yi, X., & Caire, G. (2015). ITLinQ+: An improved spectrum sharing mechanism for device-to-device communications. In IEEE 2015 49th Asilomar conference on signals, systems and computers, Pacific Grove, CA, USA (pp. 1310–1314).‏

  16. Choi, Y. J., Kil, Y. S., Kim, S. H., & Chang, S. H. (2018). SINBADLinQ: SINR based distributed link scheduling for device-to-device networks. Electronics Letters, 54(9), 599–601

    Article  Google Scholar 

  17. Naderializadeh, N., Nikopour, H., Orhan, O., & Talwar, S. (2018). Feedback-based interference management in ultra-dense networks via parallel dynamic cell selection and link scheduling. In 2018 IEEE international conference on communications (ICC), Kansas City, MO, USA (pp. 1–6).

  18. Shen, K., Yu, W., Zhao, L., & Palomar, D. P. (2019). Optimization of MIMO device-to-device networks via matrix fractional programming: A minorization-maximization approach. IEEE/ACM Transactions on Networking, 27(5), 2164–2177

    Article  Google Scholar 

  19. Shen, K., & Yu, W. (2017). FPLinQ: A cooperative spectrum sharing strategy for device-to-device communications. In 2017 IEEE international symposium on information theory (ISIT) (pp. 2323–2327).‏

  20. Zhao, G., Lin, S., Li, L., & Chen, Z. (2018). Ctlinq: Content-centric link scheduling in cache-enabled device-to-device wireless networks. In 2018 IEEE international conference on communications (ICC), Kansas City, MO, USA (pp. 1–5).‏

  21. Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., Laroia, R., & Jovicic, A. (2013). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. IEEE/ACM Transactions on Networking, 21(4), 1215–1228

    Article  Google Scholar 

  22. Liu, G., Yu, F. R., Ji, H., Leung, V. C., & Li, X. (2015). In-band full-duplex relaying: A survey, research issues and challenges. IEEE Communications Surveys & Tutorials, 17(2), 500–524

    Article  Google Scholar 

  23. Kieu, T. N., Do, D. T., Xuan, X. N., Nhat, T. N., & Duy, H. H. (2016). Wireless information and power transfer for full duplex relaying networks: Performance analysis. In AETA 2015: Recent advances in electrical engineering and related sciences (pp. 53–62). Cham: Springer.‏

  24. Zhou, M., Liao, Y., & Song, L. (2017). Full-duplex wireless communications for 5G. In 5G mobile communications (pp. 299–335). Cham: Springer.‏

  25. Bharadia, D., McMilin, E., & Katti, S. (2013). Full duplex radios. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, Hong Kong, China (pp. 375–386).‏

  26. Riihonen, T., Werner, S., & Wichman, R. (2009). Comparison of full-duplex and half-duplex modes with a fixed amplify-and-forward relay. In 2009 IEEE wireless communications and networking conference, Budapest, Hungary (pp. 1–5). ‏

  27. Riihonen, T., Werner, S., & Wichman, R. (2011). Hybrid full-duplex/half-duplex relaying with transmit power adaptation. IEEE Transactions on Wireless Communications, 10(9), 3074–3085

    Article  Google Scholar 

  28. Rodriguez, L. J., Tran, N. H., & Le-Ngoc, T. (2014). Optimal power allocation and capacity of full-duplex AF relaying under residual self-interference. IEEE Wireless Communications Letters, 3(2), 233–236

    Article  Google Scholar 

  29. Hong, S., Brand, J., Choi, J. I., Jain, M., Mehlman, J., Katti, S., & Levis, P. (2014). Applications of self-interference cancellation in 5G and beyond. IEEE Communications Magazine, 52(2), 114–121

    Article  Google Scholar 

  30. Everett, E., Sahai, A., & Sabharwal, A. (2014). Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Transactions on Wireless Communications, 13(2), 680–694

    Article  Google Scholar 

  31. Heino, M., Korpi, D., Huusari, T., Antonio-Rodriguez, E., Venkatasubramanian, S., Riihonen, T., & Valkama, M. (2015). Recent advances in antenna design and interference cancellation algorithms for in-band full duplex relays. IEEE Communications Magazine, 53(5), 91–101

    Article  Google Scholar 

  32. Antonio-Rodríguez, E., López-Valcarce, R., Riihonen, T., Werner, S., & Wichman, R. (2013). Adaptive self-interference cancellation in wideband full-duplex decode-and-forward MIMO relays. In 2013 IEEE 14th workshop on signal processing advances in wireless communications (SPAWC) (pp. 370–374). ‏

  33. Riihonen, T., Werner, S., & Wichman, R. (2009). Spatial loop interference suppression in full-duplex MIMO relays. In 2009 Conference record of the forty-third Asilomar conference on signals, systems and computers, Pacific Grove, CA, USA (pp. 1508–1512).

  34. Zhang, R., Cheng, X., & Yang, L. (2016). Cooperation via spectrum sharing for physical layer security in device-to-device communications underlaying cellular networks. IEEE Transactions on Wireless Communications, 15(8), 5651–5663

    Article  Google Scholar 

  35. Hiep, P. T., & Kohno, R. (2012). Capacity bound for full-duplex multiple-hop MIMO relays system in Rayleigh fading. IEEE Wireless Telecommunications Symposium, 2012, 1–6

    Google Scholar 

  36. Nguyen, K. T., Do, D. T., & Vozňák, M. (2017). An optimal analysis in wireless powered full-duplex relaying network. Radioenginearing, 26(1), 369–375

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the proposed scheme, the objective is to maximize the sum of the SINR of links according to the optimal e variables (28). There is one constraint to acquire the optimal coefficients of power dedication to transmitters and relays (29). This constraint is between the \({e}_{min}\) and\({e}_{max}\), which \(P_{{S_{j} }}\) and \(P_{{R_{j} }}\) are defined based on the \({e}_{min}\) and \({e}_{max}\) (30, 31). At first by substituting \(and \) according to the \({e}_{j},\) also, \(P_{{S_{i} }}\) and \(P_{{R_{i} }}\) according to the \({e}_{i},\) the following equations are concluded (39–44).

Then we calculate the gradient of main formula of SINR. Derivative of SINR is conducted. according \({e}_{j}\) and\({e}_{i}\). For convenience of calculations, the following formulas are equivalent to \(\varphi ,\varphi_{1} ,\tau ,\tau_{1} ,\vartheta ,\vartheta_{1} ,\ell ,\ell_{1} ,\xi ,\xi_{1}\) sequentially. Here, φ and \(\varphi_{1}\) denote to the \(G_{j}^{ - 2}\) and \(G_{i}^{ - 2}\) which mean the inverse of the second power of coefficient of j-th relay amplification and i-th relay amplification, respectively. Also, \(\xi\) and \(\xi_{1}\) are SI coefficient of j-th relay and i-th relay. The power of j-th source and the power of i-th source is shown by p-\(\tau\) and p-\(\tau_{1}\). Also, the power of j-th relay and the power of i-th relay is shown by \(\tau\) and \(\tau_{1}\), respectively.

$$ \begin{gathered} \varphi = \frac{{e_{j} p}}{{\mathop d\nolimits_{{1_{jj} }}^{m} }}\left| {h_{{1_{jj} }} } \right|^{2} + (1 - e_{j} )p\left| {h_{{2_{jj} }} } \right|^{2} + \sigma_{n}^{2} ,\varphi_{1} = \frac{{e_{i} p}}{{\mathop d\nolimits_{{1_{ii} }}^{m} }}\left| {h_{{1_{ii} }} } \right|^{2} + (1 - e_{i} )p\left| {h_{{2_{ij} }} } \right|^{2} + \sigma_{n}^{2} , \hfill \\ p_{{R_{j} }} = (1 - e_{j} )p = \tau ,p_{{S_{j} }} = (e_{j} p) = p - \tau ,p_{{R_{i} }} = (1 - e_{i} )p = \tau_{1} ,p_{{S_{i} }} = (e_{i} p) = p - \tau_{1} , \hfill \\ \frac{{h_{{1_{ij} }} }}{{\sqrt {d_{{1_{ij} }}^{m} } }} = \ell ,\frac{{h_{{2_{ii} }} }}{{\sqrt {d_{{2_{ii} }}^{m} } }} = \ell ,_{1} \frac{{h_{{1_{jj} }} }}{{\sqrt {d_{{1_{jj} }}^{m} } }} = \vartheta ,\frac{{h_{{2_{jj} }} }}{{\sqrt {d_{{2_{jj} }}^{m} } }} = \vartheta_{1} ,\mathop h\limits^{\sim}_{{R_{j} }} = \xi ,\mathop h\limits^{\sim}_{{R_{i} }} = \xi_{1} , \hfill \\ \end{gathered} $$
$$ {\text{S}}_{j} = \vartheta \vartheta_{1} x_{{S_{j} }} \frac{{\tau (\sqrt {(p - \tau )} )}}{\sqrt \varphi },\frac{{\partial {\text{S}}_{j} }}{{\partial e_{j} }} = \vartheta \vartheta_{1} x_{{S_{j} }} p\frac{{((\tau - 0.5p)\phi - (0.5(\vartheta^{2} - \left| {h_{{2_{jj} }} } \right|^{2} )\tau (p - \tau ))}}{{\varphi \sqrt \varphi \sqrt {(p - \tau )\tau } }},\frac{{\partial {\text{S}}_{j} }}{{\partial e_{i} }} = 0, $$
(39)
$$ \begin{gathered} \text{IN}_{{R_{jj} }} = \vartheta_{1} \xi \frac{{\tau (\sqrt {(p - \tau )} \vartheta x_{{S_{j} }} + N_{{R_{j} }} )}}{{\varphi (1 - \xi \frac{\sqrt \tau }{{\sqrt \varphi }})}} = \vartheta_{1} \xi \frac{{\tau (\sqrt {(p - \tau )} \vartheta x_{{S_{j} }} + N_{{R_{j} }} )}}{{\varphi (\frac{\sqrt \varphi - \xi \sqrt \tau }{{\sqrt \varphi }})}} = \vartheta_{1} \xi \frac{{\tau (\sqrt {(p - \tau )} \vartheta x_{{S_{j} }} + N_{{R_{j} }} )}}{{(\varphi - \xi \sqrt {\varphi \tau } )}},\frac{{\partial {\text{IN}}_{{R_{jj} }} }}{{\partial e_{i} }} = 0 \hfill \\ \frac{{\text{IN}_{{R_{jj} }} }}{{\partial e_{j} }} = \vartheta_{1} \xi (\frac{{(p(\frac{(1.5\tau - p)}{{\sqrt {(p - \tau )} }}\vartheta x_{{_{{S_{j} }} }} )(\varphi - \xi \tau \sqrt \varphi )) - ((\tau \sqrt {(p - \tau )} \vartheta x_{{_{{S_{j} }} }} + N_{{R_{j} }} )((p\vartheta^{2} - p\left| {h_{{2_{jj} }} } \right|^{2} )}}{{(\varphi - \xi \tau \sqrt \varphi )^{2} }} - \hfill \\ \frac{{\xi (\frac{{ - p\sqrt \varphi + \tau (\vartheta^{2} p - p\left| {h_{{2_{jj} }} } \right|^{2} )}}{{2\sqrt {\varphi \tau } }})))}}{{(\varphi - \xi \tau \sqrt \varphi )^{2} }}), \hfill \\ \end{gathered} $$
(40)
$$ {\text{IN}}_{{N_{jj} }} = \vartheta_{1} N_{{R_{j} }} \sqrt {\frac{\tau }{\varphi }} ,\frac{{\partial {\text{IN}}_{{N_{jj} }} }}{{\partial e_{j} }} = \vartheta_{1} N_{{R_{j} }} p\frac{{( - \varphi + \tau (\left| {h_{{2_{jj} }} } \right|^{2} - \vartheta^{2} ))}}{{2\varphi \sqrt {\varphi \tau } }},\frac{{\partial {\text{IN}}_{{N_{jj} }} }}{{\partial e_{i} }} = 0, $$
(41)
$$ \text{IN}_{{N_{ij} }} = \sum\limits_{\begin{subarray}{l} i = 1, \\ i \ne j \end{subarray} }^{i = j - 1} {\ell_{1} } N_{{R_{i} }} \sqrt {\frac{{\tau_{1} }}{{\varphi_{1} }}} ,\frac{{\partial {\text{IN}}_{{N_{ij} }} }}{{\partial e_{i} }} = \sum\limits_{\begin{subarray}{l} i = 1, \\ i \ne j \end{subarray} }^{i = j - 1} {\ell_{1} } N_{{R_{i} }} p\frac{{(\varphi_{1} + (\ell^{2} - \left| {h_{{2_{ij} }} } \right|^{2} )\tau_{1} )}}{{ - 2\varphi_{1} \sqrt {\varphi_{1} \tau_{1} } }},\frac{{\partial {\text{IN}}_{{N_{ij} }} }}{{\partial e_{j} }} = 0, $$
(42)
$$ \begin{gathered} {\text{IN}}_{{R_{ij} }} = \sum\limits_{\begin{subarray}{l} i = 1 \\ j \ne i \end{subarray} }^{i = j - 1} {\ell_{1} \xi_{1} } \frac{{(\tau_{1} \sqrt {(p - \tau_{1} )} \ell x_{{S_{i} }} + N_{{R_{j} }} )}}{{(\varphi_{1} - \xi_{1} \sqrt {\tau_{1} \varphi_{1} } )}},\frac{{\partial {\text{IN}}_{{R_{ij} }} }}{{\partial e_{j} }} = 0, \hfill \\ \frac{{\partial {\text{IN}}_{{R_{ij} }} }}{{\partial e_{i} }} = \sum\limits_{\begin{subarray}{l} i = 1 \\ j \ne i \end{subarray} }^{i = j - 1} {\ell_{1} \xi_{1} } (\frac{{(p\frac{{(1.5\tau_{1} - p)}}{{\sqrt {(p - \tau_{1} )} }}\ell x_{{S_{i} }} )(\varphi_{1} - \xi_{1} \tau_{1} \sqrt {\varphi_{1} } ) - (\tau_{1} \sqrt {(p - \tau_{1} )} \ell x_{{S_{i} }} + N_{{R_{j} }} )(p(\ell_{1}^{2} - \left| {h_{{2_{ij} }} } \right|^{2} ) - \xi_{1} (\frac{{ - p\sqrt {\varphi_{1} } + p\tau_{1} (\ell_{1}^{2} - \left| {h_{{2_{ij} }} } \right|^{2} )}}{{2\sqrt {\varphi_{1} \tau_{1} } }}))}}{{(\varphi_{1} - \xi_{1} \tau_{1} \sqrt {\varphi_{1} } )^{2} }}), \hfill \\ \end{gathered} $$
(43)
$$ {\text{IN}}_{{RD_{ij} }} = \sum\limits_{\begin{subarray}{l} i = 1, \\ i \ne j \end{subarray} }^{i = j - 1} {\ell \ell_{1} } x_{{s_{i} }} \sqrt {\frac{{\tau_{1} }}{{\varphi_{1} }}} ,\frac{{\partial {\text{IN}}_{{RD_{ij} }} }}{{\partial e_{i} }} = \sum\limits_{\begin{subarray}{l} i = 1, \\ i \ne j \end{subarray} }^{i = j - 1} {\ell \ell_{1} } x_{{s_{i} }} p\frac{{(\varphi_{1} + 0.5\tau_{1} p(\ell_{1}^{2} - \left| {h_{{2_{ij} }} } \right|^{2} ))}}{{ - 2\varphi_{1} \sqrt {\varphi_{1} \tau_{1} } }},\frac{{\partial {\text{IN}}_{{RD_{ij} }} }}{{\partial e_{j} }} = 0. $$
(44)

After calculating the SINR of links based on the \({e}_{i}\) and \({e}_{j}\), the partial derivative of the SINR of links respect to the \({e}_{i}\) and \({e}_{j}\) are obtained as follow:

$$ \begin{gathered} \frac{\begin{gathered} \frac{{\partial {\text{SINR}}_{j} }}{{\partial e_{j} }} = ((2\vartheta^{2} \vartheta_{1}^{2} x_{{S_{j} }}^{2} p\frac{{((\tau - 0.5p) - {(}0.5(\vartheta^{2} - \left| {h_{{2_{jj} }} } \right|^{2} )\tau (p - \tau ))}}{{\varphi^{2} }}((\vartheta \xi \frac{{\tau (\sqrt {(p - \tau )} \vartheta x_{s} + N_{{R_{j} }} }}{{(\varphi - \xi \sqrt {\varphi \tau } )}})^{2} + (\vartheta_{1} N_{{R_{j} }} \sqrt {\frac{\tau }{\varphi }} )^{2} + \sigma_{{N_{j} }}^{2} )) \hfill \\ - 2((\vartheta \vartheta_{1} x_{{S_{j} }} \frac{{\sqrt {\tau (p - \tau )} }}{\sqrt \varphi })^{2} )(\vartheta_{1} \xi \frac{{\tau (\sqrt {(p - \tau )} \vartheta x_{{S_{j} }} + N_{{R_{j} }} }}{{{(}\vartheta - \xi \sqrt {\varphi \tau } )}} + \vartheta_{1} N_{{R_{j} }} \sqrt {\frac{\tau }{\varphi }} ) \hfill \\ ((\vartheta_{1} N_{{R_{j} }} p\frac{{( - \varphi + \tau (\left| {h_{{2_{jj} }} } \right|^{2} - \vartheta^{2} )}}{{2\varphi \sqrt {\varphi \tau } }}) + \vartheta_{1} \xi (\frac{{(p(\frac{(1.5\tau - p)}{{\sqrt {(p - \tau )} }}\vartheta x_{{S_{j} }} )(\varphi - \xi \tau \sqrt \varphi )) - ((\tau \sqrt {(p - \tau )} \vartheta x_{{S_{j} }} + N_{{R_{j} }} )((p\vartheta^{2} - p\left| {h_{{2_{jj} }} } \right|^{2} )}}{{(\vartheta - \xi \tau \sqrt \varphi )^{2} }} \hfill \\ \end{gathered} }{{((\vartheta_{1} \xi \frac{{\tau (\sqrt {(p - \tau )} \vartheta x_{{S_{j} }} + N_{{R_{j} }} }}{{(\varphi - \xi \sqrt {\varphi \tau } )}})^{2} + (\vartheta_{1} N_{{R_{j} }} \sqrt {\frac{\tau }{\varphi }} )^{2} + \sigma_{N}^{2} ))^{2} }} - \hfill \\ \frac{{\frac{{ - \xi (\frac{{ - p\sqrt \varphi + \tau (\vartheta^{2} p - p\left| {h_{{2_{jj} }} } \right|^{2} )}}{{2\sqrt {\varphi \tau } }})))}}{{(\vartheta - \xi \tau \sqrt \varphi )^{2} }}}}{{((\vartheta_{1} \xi \frac{{\tau (\sqrt {(p - \tau )} \vartheta x_{{S_{j} }} + N_{{R_{j} }} }}{{(\varphi - \xi \sqrt {\varphi \tau } )}})^{2} + (\vartheta_{1} N_{{R_{j} }} \sqrt {\frac{\tau }{\varphi }} )^{2} + \sigma_{N}^{2} ))^{2} }}))), \hfill \\ \end{gathered} $$
(45)
$$ \frac{\begin{gathered} \frac{{\partial {\text{SINR}}_{j} }}{{\partial e_{i} }} = ( - 2(\vartheta_{1} \xi \frac{{\tau (\sqrt {(p - \tau )} \vartheta x_{{S_{j} }} + N_{{R_{j} }} )}}{{(\varphi - \xi \sqrt {\varphi \tau } )}} + \vartheta_{1} N_{{R_{j} }} \sqrt {\frac{\tau }{\varphi }} )(\sum\limits_{\begin{subarray}{l} i = 1, \\ i \ne j \end{subarray} }^{i = j - 1} {\ell_{1} } N_{{R_{i} }} p\frac{{\varphi_{1} + (\ell_{1}^{2} - \left| {h_{{2_{ij} }} } \right|^{2} )\tau_{1} }}{{ - 2\varphi_{1} \sqrt {\varphi_{1} \tau_{1} } }} + \hfill \\ \sum\limits_{\begin{subarray}{l} i = 1 \\ j \ne i \end{subarray} }^{i = j - 1} {\xi_{1} \ell_{1} } (\frac{{(p\frac{{(1.5\tau_{1} - p)}}{{\sqrt {(p - \tau_{1} )} }}\ell_{1} x_{{S_{i} }} )(\varphi_{1} - \xi_{1} \tau_{1} \sqrt {\varphi_{1} } ) - (\tau_{1} \sqrt {(p - \tau_{1} )} \ell x_{{S_{i} }} + N_{{R_{j} }} )(p(\ell_{1}^{2} - \left| {h_{{2_{ij} }} } \right|^{2} ) - \xi_{1} (\frac{{ - p\sqrt {\varphi_{1} } + p\tau_{1} (\ell_{1}^{2} - \left| {h_{{2_{ij} }} } \right|^{2} )}}{{2\sqrt {\varphi_{1} \tau_{1} } }}))}}{{(\varphi_{1} - \xi_{1} \tau_{1} \sqrt {\varphi_{1} } )^{2} }} + \hfill \\ \sum\limits_{\begin{subarray}{l} i = 1, \\ i \ne j \end{subarray} }^{i = j - 1} {\ell_{1} \ell } x_{{s_{i} }} p\frac{{{(}\varphi_{1} + 0.5\tau_{1} p(\ell_{1}^{2} - \left| {h_{{2_{ij} }} } \right|^{2} )}}{{ - 2\varphi_{1} \sqrt {\varphi_{1} \tau_{1} } }})(\vartheta \vartheta_{1} x_{{S_{j} }} \frac{{\sqrt {\tau (p - \tau )} }}{\sqrt \varphi })^{2} )) \hfill \\ \end{gathered} }{{((\vartheta_{1} \xi \frac{{\tau_{1} (\sqrt {(p - \tau )} \vartheta x_{{S_{j} }} + N_{{R_{j} }} }}{{(\varphi - \xi \sqrt {\varphi \tau } )}})^{2} + (\vartheta_{1} N_{{R_{j} }} \sqrt {\frac{\tau }{\varphi }} )^{2} + \sigma_{N}^{2} ))^{2} }}. $$
(46)

The optimal variable value \({e}_{j}\) and \({e}_{i}\) are obtained by setting the gradient of SINR to zero. Then by applying these achieved values, power is allocated to users in the network.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri Hanjani, Z., Mohammadi, A., Dosaranian-Moghadam, M. et al. Modeling of spectrum sharing using ITLinQ scheme in device-to-device networks with full-duplex relays. Telecommun Syst 78, 85–102 (2021). https://doi.org/10.1007/s11235-021-00795-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00795-w

Keywords

Navigation