Skip to main content
Log in

Performance analysis of downlink and uplink decoupled access in clustered heterogeneous cellular networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The performance of heterogeneous cellular networks (HCNs) is typically analyzed with the assumption that the users connect with the same base station in uplink and downlink. However, recent investigations have shown that downlink–uplink decoupling (DUDe) can provide network performance gains relative to the conventional coupled access. Many authors have evaluated HCN performance while assuming that the network users are distributed according to a homogeneous Poisson point process (HPPP). However, the HPPP cannot accurately model the uplink interference when the users are clustered in urban hotspots such as shopping malls and sports stadiums. This work investigates DUDe access for an HCN with user-clustering modeled by the Matern cluster process. We derive analytical expressions of the coverage probability and average throughput for DUDe access as well as the conventional coupled access. The results show that DUDe outperforms the coupled access scheme in terms of coverage and throughput. The user-clustering is also shown to benefit the coverage and throughput performance relative to the case of HPPP distributed users. The derived results are validated by Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. By the Slivnyak’s theorem, a point process remains unchanged by placing a point at the coordinate system’s origin [21].

References

  1. Andrews, J. G. (2013). Seven ways that hetnets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144.

    Article  Google Scholar 

  2. Soret, B., & Pedersen, K. I. (2015). Centralized and distributed solutions for fast muting adaptation in LTE-advanced HetNets. IEEE Transactions on Vehicular Technology, 64(1), 147–158.

    Article  Google Scholar 

  3. Singh, S., Zhang, X., & Andrews, J. G. (2015). Joint rate and SINR coverage analysis for decoupled uplink–downlink biased cell associations in HetNets. IEEE Transactions on Wireless Communications, 14(10), 5360–5373.

    Article  Google Scholar 

  4. Boccardi, F., Andrews, J., Elshaer, H., Dohler, M., Parkvall, S., Popovski, P., et al. (2016). Why to decouple the uplink and downlink in cellular networks and how to do it. IEEE Communications Magazine, 54(3), 110–117.

    Article  Google Scholar 

  5. Bacha, M., Wu, Y., & Clerckx, B. (2017). Downlink and uplink decoupling in two-tier heterogeneous networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 16(5), 2760–2775.

    Article  Google Scholar 

  6. Sekander, S., Tabassum, H., & Hossain, E. (2017). Decoupled uplink–downlink user association in multi-tier full-duplex cellular networks: A two-sided matching game. IEEE Transactions on Mobile Computing, 16(10), 2778–2791.

    Article  Google Scholar 

  7. Smiljkovikj, K., Elshaer, H., Popovski, P., Boccardi, F., Dohler, M., Gavrilovska, L., & Irmer, R. (2014). Capacity analysis of decoupled downlink and uplink access in 5G heterogeneous systems. arXiv preprint arXiv:1410.7270.

  8. Sial, M. N., & Ahmed, J. (2018). Analysis of K-tier 5G heterogeneous cellular network with dual-connectivity and uplink–downlink decoupled access. Telecommunication Systems, 67(4), 669–685.

    Article  Google Scholar 

  9. Smiljkovikj, K., Gavrilovska, L., & Popovski, P. (2015). Efficiency analysis of downlink and uplink decoupling in heterogeneous networks. In IEEE communication workshop (ICCW) (pp. 125–130).

  10. Zhang, L., Feng, G., Nie, W., & Qin, S. (2015). A comparison study of coupled and decoupled uplink–downlink access in heterogeneous cellular networks. In Global communications conference (GLOBECOM) (pp. 1–7).

  11. Sial, N., & Ahmed, J. (2017). A novel and realistic hybrid downlink–uplink coupled/decoupled access scheme for 5G HetNets. Turkish Journal of Electrical Engineering & Computer Sciences, 25(6), 4457–4473.

    Article  Google Scholar 

  12. Andrews, J. G., Gupta, A. K., & Dhillon, H. S. (2016). A primer on cellular network analysis using stochastic geometry. arXiv preprint arXiv:1604.03183.

  13. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on communications, 59(11), 3122–3134.

    Article  Google Scholar 

  14. Andrews, J. G., Ganti, R. K., Haenggi, M., Jindal, N., & Weber, S. (2010). A primer on spatial modeling and analysis in wireless networks. IEEE Communications Magazine, 48(11), 156–163.

    Article  Google Scholar 

  15. Chun, Y. J., Hasna, M. O., & Ghrayeb, A. (2015). Modeling heterogeneous cellular networks interference using Poisson cluster processes. IEEE Journal on Selected Areas in Communications, 33(10), 2182–2195.

    Article  Google Scholar 

  16. Ganti, R. K., & Haenggi, M. (2009). Interference and outage in clustered wireless ad hoc networks. IEEE Transactions on Information Theory, 55(9), 4067–4086.

    Article  Google Scholar 

  17. Saha, C., Afshang, M., & Dhillon, H. S. (2017). Poisson cluster process: Bridging the gap between PPP and 3GPP HetNet models. In Information theory and applications workshop (ITA) (pp. 1–9).

  18. Afshang, M., & Dhillon, H. S. (2018). Poisson cluster process based analysis of HetNets with correlated user and base station locations. IEEE Transactions on Wireless Communications, 17(4), 2417–2431.

    Article  Google Scholar 

  19. Chun, Y. J., & Hasna, M. O. (2014). Analysis of heterogeneous cellular networks interference with biased cell association using Poisson cluster processes. In 2014 International conference on information and communication technology convergence (ICTC) (pp. 319–324).

  20. Zhang, L., Nie, W., Feng, G., Zheng, F. C., & Qin, S. (2017). Uplink performance improvement by decoupling uplink/downlink access in HetNets. IEEE Transactions on Vehicular Technology, 66(8), 6862–6876.

    Article  Google Scholar 

  21. Chiu, S. N., Stoyan, D., Kendall, W. S., & Mecke, J. (2013). Stochastic geometry and its applications. New York: Wiley.

    Book  Google Scholar 

  22. Wang, Y., & Zhu, Q. (2017). Modeling and analysis of small cells based on clustered stochastic geometry. IEEE Communications Letters, 21(3), 576–579.

    Article  Google Scholar 

  23. Novlan, T. D., Dhillon, H. S., & Andrews, J. G. (2013). Analytical modeling of uplink cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2669–2679.

    Article  Google Scholar 

  24. Muhammad, F., Abbas, Z. H., Abbas, G., & Jiao, L. (2016). Decoupled downlink–uplink coverage analysis with interference management for enriched heterogeneous cellular networks. IEEE Access, 4, 6250–6260.

    Article  Google Scholar 

  25. Andrews, L. C., & Andrews, L. C. (1992). Special functions of mathematics for engineers. New York: McGraw-Hill.

    Google Scholar 

  26. Wang, H., Leung, S. H., & Song, R. (2018). Uplink area spectral efficiency analysis for multichannel heterogeneous cellular networks with interference coordination. IEEE Access, 6, 14485–14497.

    Article  Google Scholar 

  27. Smiljkovikj, K., Popovski, P., & Gavrilovska, L. (2015). Analysis of the decoupled access for downlink and uplink in wireless heterogeneous networks. IEEE Wireless Communications Letters, 4(2), 173–176.

    Article  Google Scholar 

  28. Sial, M. N., & Ahmed, J. (2019). A realistic uplink-downlink coupled and decoupled user association technique for K-tier 5G HetNets. Arabian Journal for Science and Engineering, 44(3), 2185–2204.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the EU-funded Project ATOM-690750, approved under call H2020-MSCA-RISE-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Arif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Eq. (17)

In DUDe scheme, the typical user is in coverage if the instantaneous SINR at the tagged SBS is greater than the predefined threshold. Then the coverage probability is expressed as

$$\begin{aligned} P_{c}^{D}&\triangleq E_{X_{S}}\left[ Pr\left[ SINR_{X_{S}}^{UL}>\tau \vert X_{S}\right] \right] \nonumber \\&=\int _{0}^{\infty } Pr\left[ SINR_{X_{S}}^{UL}>\tau \vert X_{S}\right] \cdot f^{(2)}_{X_{S}}(x_{s})d_{x_{s}}\nonumber \\&{\mathop {=}\limits ^{1}}\int _{0}^{\infty } Pr\left[ \dfrac{P_{u}h_{X_{S}}\Vert X_{S}\Vert ^{-\alpha }}{\sum _{j\epsilon \Phi _{u}}P_{u}h_{X_{j}}\Vert X_{j}-X_{S}\Vert ^{-\alpha } + \sigma _{N}^{2}}>\tau \vert X_{S}\right] \nonumber \\&\qquad \cdot \, f^{(2)}_{X_{S}}(x_{s})d_{x_{s}}\nonumber \\&{\mathop {=}\limits ^{2}}\int _{0}^{\infty } Pr\left[ h_{X_{S}}>\dfrac{\tau X_{S}^{\alpha }}{P_{u}}\left( \sigma _{N}^{2} + I\right) \right] \cdot f^{(2)}_{X_{S}}(x_{s})d_{x_{s}}\nonumber \\&{\mathop {=}\limits ^{3}}\int _{0}^{\infty } \exp \left( \dfrac{-\tau \sigma _{N}^{2} X_{S}^{\alpha }}{P_{u}}\right) \cdot L_{I}\left( s\right) \cdot f^{(2)}_{X_{S}}(x_{s})d_{x_{s}} \end{aligned}$$
(25)

where \({\mathop {=}\limits ^{1}}\) is obtained by substituting (2) in \(P_{c}^{D}\), \({\mathop {=}\limits ^{2}}\) is obtained using \(I=\sum _{j\epsilon \Phi _{u}}P_{u}\)\(h_{X_{j}}\Vert X_{j} - X_{S}\Vert ^{-\alpha }\) and \({\mathop {=}\limits ^{3}}\) follows from the assumption of Rayleigh fading channel gains. Finally, (17) is obtained by substituting (13) and (15) into (25).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, M., Wyne, S. & Ahmed, J. Performance analysis of downlink and uplink decoupled access in clustered heterogeneous cellular networks. Telecommun Syst 72, 355–364 (2019). https://doi.org/10.1007/s11235-019-00571-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00571-x

Keywords

Navigation