Skip to main content
Log in

Formation time of quark–gluon plasma in heavy-ion collisions in the holographic shock wave model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We estimate the thermalization time in a holographic model of two colliding shock waves corresponding to heavy-ion collisions. For this, we model the process by the Vaidya metric with a horizon defined by the trapped surface location. We consider two bottom-up AdS/QCD models that in the colliding shock wave approach give a dependence of the multiplicity on energy compatible with the RHIC and LHC results. One model is a bottom-up AdS/QCD confining model, and the other is related to an anisotropic thermalization. We estimate the thermalization time and show that increasing the confining potential decreases the thermalization time and anisotropy accelerates the thermalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Maldacena, Adv. Theor. Math. Phys., 2, 231–252 (1998); arXiv:hep-th/9711200v3 (1997).

    MathSciNet  ADS  Google Scholar 

  2. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B, 428, 105–114 (1998); arXiv:hep-th/9802109v2 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Adv. Theor. Math. Phys., 2, 253–291 (1998); arXiv:hep-th/9802150v2 (1998).

    MathSciNet  ADS  Google Scholar 

  4. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, “Gauge/string duality, hot QCD, and heavy ion collisions,” arXiv:1101.0618v2 [hep-th] (2011).

    MATH  Google Scholar 

  5. I. Ya. Aref’eva, Phys. Usp., 57, 527–555 (2014).

    Article  Google Scholar 

  6. O. DeWolfe, S. S. Gubser, C. Rosen, and D. Teaney, Prog. Part. Nucl. Phys., 75, 86–132 (2014); arXiv: 1304.7794v2 [hep-th] (2013).

    Article  ADS  Google Scholar 

  7. J. Polchinski and M. J. Strassler, “The string dual of a confining four-dimensional gauge theory,” arXiv:hep-th/0003136v2 (2000).

    Google Scholar 

  8. J. Polchinski and M. J. Strassler, JHEP, 0305, 012 (2003); arXiv:hep-th/0209211v1 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnik, and I. Kirsch, Phys. Rev. D, 69, 066007 (2004); arXiv:hep-th/0306018v3 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters, JHEP, 0405, 041 (2004); arXiv:hep-th/0311270v4 (2003).

    Article  ADS  Google Scholar 

  11. T. Sakai and S. Sugimoto, Prog. Theoret. Phys., 113, 843–882 (2005); arXiv:hep-th/0412141v5 (2004)

    Article  ADS  Google Scholar 

  12. T. Sakai and S. Sugimoto, Prog. Theoret. Phys., 114, 1083–1118 (2006); arXiv:hep-th/0507073v4 (2005).

    Article  ADS  Google Scholar 

  13. J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. Lett., 95, 261602 (2005); arXiv:hep-ph/ 0501128v2 (2005).

    Article  ADS  Google Scholar 

  14. A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. D, 74, 015005 (2006).

    Article  ADS  Google Scholar 

  15. O. Andreev and V. I. Zakharov, Phys. Rev. D, 74, 025023 (2006); arXiv:hep-ph/0604204v3 (2006).

    Article  ADS  Google Scholar 

  16. O. Andreev and V. I. Zakharov, Phys. Lett. B, 645, 437–4411 (2007); arXiv:hep-ph/0607026v1 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  17. C. D. White, Phys. Lett. B, 652, 795 (2007); arXiv:hep-ph/0701157v2 (2007).

    Article  Google Scholar 

  18. H. J. Pirner and B. Galow, Phys. Lett. B, 679, 51–55 (2009); arXiv:0903.2701v3 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  19. B. Galow, E. Megías, J. Nian, and H. J. Pirner, Nucl. Phys. B, 834, 330–362 (2010); arXiv:0911.0627v3 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  20. S. He, M. Huang, and Q.-S. Yan, Phys. Rev. D, 83, 045034 (2011); arXiv:1004.1880v1 [hep-ph] (2010).

    Article  ADS  Google Scholar 

  21. U. Gürsoy, E. Kiritsis, L. Mazzanti, and F. Nitti, JHEP, 0905, 033 (2009); arXiv:0812.0792v2 [hep-th] (2008).

    Article  Google Scholar 

  22. U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, and F. Nitti, “Improved holographic QCD,” in: From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence (Lect. Notes Phys., Vol. 828, E. Papantonopoulos, ed.), Springer, Berlin (2011), pp. 79–146; arXiv:1006.5461v1 [hep-th] (2010).

    Chapter  Google Scholar 

  23. P. M. Chesler and W. van der Schee, “Early thermalization, hydrodynamics, and energy loss in AdS/CFT,” arXiv:1501.04952v1 [nucl-th] (2015).

    Google Scholar 

  24. S. S. Gubser, S. S. Pufu, and A. Yarom, Phys. Rev. D, 78, 066014 (2008); arXiv:0805.1551v1 [hep-th] (2008).

    Article  ADS  Google Scholar 

  25. J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, JHEP, 0807, 100 (2008); arXiv:0805.2927v3 [hep-th] (2008).

    Article  MathSciNet  ADS  Google Scholar 

  26. L. Alvarez-Gaumé, C. Gómez, A. Sabio Vera, A. Tavanfar, and M. A. Vazquez-Mozo, JHEP, 0902, 009 (2009); arXiv:0811.3969v1 [hep-th] (2008).

    Article  ADS  Google Scholar 

  27. P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett., 102, 211601 (2009); arXiv:0812.2053v2 [hep-th] (2008).

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Lin and E. Shuryak, Phys. Rev. D, 79, 124015 (2009); arXiv:0902.1508v2 [hep-th] (2009).

    Article  ADS  Google Scholar 

  29. S. S. Gubser, S. S. Pufu, and A. Yarom, JHEP, 0911, 050 (2009); arXiv:0902.4062v1 [hep-th] (2009).

    Article  ADS  Google Scholar 

  30. I. Ya. Aref’eva, A. A. Bagrov, and E. A. Guseva, JHEP, 0912, 009 (2009); arXiv:0905.1087v4 [hep-th] (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. I. Ya. Aref’eva, A. A. Bagrov, and L. V. Joukovskaya, JHEP, 1003, 002 (2010); arXiv:0909.1294v2 [hep-th] (2009).

    Article  ADS  Google Scholar 

  32. S. Lin and E. Shuryak, Phys. Rev. D, 83, 045025 (2011); arXiv:1011.1918v2 [hep-th] (2010).

    Article  ADS  Google Scholar 

  33. I. Ya. Aref’eva, A. A. Bagrov, and E. O. Pozdeeva, JHEP, 1205, 117 (2012); arXiv:1201.6542v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  34. E. Kiritsis, and A. Taliotis, JHEP, 1204, 065 (2012); arXiv:1111.1931v2 [hep-ph] (2011)

    Article  ADS  Google Scholar 

  35. A. Taliotis, JHEP, 1305, 034 (2013); arXiv:1212.0528v2 [hep-th] (2012).

    Article  MathSciNet  ADS  Google Scholar 

  36. G. Aad et al. [ATLAS Collab.], Phys. Lett. B, 710, 363–382 (2012); arXiv:1108.6027v2 [hep-ex] (2011).

    Article  ADS  Google Scholar 

  37. I. Ya. Aref’eva, E. O. Pozdeeva, and T. O. Pozdeeva, Theor. Math. Phys., 176, 861–872 (2013); arXiv: 1401.1180v1 [hep-th] (2014)

    Article  Google Scholar 

  38. I. Ya. Aref’eva, E. O. Pozdeeva, and T. O. Pozdeeva, Theor. Math. Phys., 180, 781–794 (2014).

    Article  MathSciNet  Google Scholar 

  39. D. S. Ageev and I. Ya. Aref’eva, JETP, 120, 436–443 (2015); arXiv:1409.7558v3 [hep-th] (2014).

    Article  ADS  Google Scholar 

  40. I. Ya. Aref’eva and A. A. Golubtsova, “Shock waves in Lifshitz-like spacetimes,” arXiv:1410.4595v3 [hep-th] (2014).

    Google Scholar 

  41. D. Giataganas, arXiv:1306.1404v3 [hep-th] PoS (Corfu2012), 122 (2013).

    Google Scholar 

  42. M. Strickland, “Thermalization and isotropization in heavy-ion collisions,” arXiv:1312.2285v1 [hep-ph] (2013).

    Google Scholar 

  43. U. H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski, Nucl. Phys. B, 563, 279–292 (1999); arXiv:hep-th/ 9905227v2 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  44. J. Abajo-Arrastia, J. Aparicio, and E. Lopez, JHEP, 1011, 149 (2010); arXiv:1006.4090v1 [hep-th] (2010).

    Article  ADS  Google Scholar 

  45. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, Phys. Rev. Lett., 106, 191601 (2011); arXiv:1012.4753v3 [hep-th] (2010).

    Article  ADS  Google Scholar 

  46. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, and A. Schäfer, Phys. Rev. D, 84, 026010 (2011); arXiv:1103.2683v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  47. J. Aparicio and E. Lopez, JHEP, 1112, 082 (2011); arXiv:1109.3571v1 [hep-th] (2011).

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Callan, J.-Y. He, and M. Headrick, JHEP, 1206, 081 (2012); arXiv:1204.2309v1 [hep-th] (2012).

    Article  MathSciNet  ADS  Google Scholar 

  49. D. Galante and M. Schvellinger, JHEP, 1207, 096 (2012); arXiv:1205.1548v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  50. E. Caceres and A. Kundu, JHEP, 1209, 055 (2012); arXiv:1205.2354v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  51. I. Ya. Aref’eva and I. V. Volovich, Theor. Math. Phys., 174, 186–196 (2013); arXiv:1211.6041v1 [hep-th] (2012).

    Article  MathSciNet  Google Scholar 

  52. I. Aref’eva, A. Bagrov, and A. S. Koshelev, JHEP, 1307, 170 (2013); arXiv:1305.3267v2 [hep-th] (2013).

    Article  MathSciNet  ADS  Google Scholar 

  53. V. Keranen, E. Keski-Vakkuri, and L. Thorlacius, Phys. Rev. D, 85, 026005 (2012); arXiv:1110.5035v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  54. M. Alishahiha, E. Ó. Colgáin, and H. Yavartanoo, JHEP, 1211, 137 (2012); arXiv:1209.3946v3 [hep-th] (2012).

    Article  ADS  Google Scholar 

  55. M. Alishahiha, A. F. Astaneh, and M. R. M. Mozaffar, Phys. Rev. D, 90, 046004 (2014); arXiv:1401.2807v3 [hep-th] (2014).

    Article  ADS  Google Scholar 

  56. P. Fonda, L. Franti, V. Keranen, E. Keski-Vakkuri, L. Thorlacius, and E. Tonni, “Holographic thermalization with Lifshitz scaling and hyperscaling violation,” arXiv:1401.6088v2 [hep-th] (2014).

    Google Scholar 

  57. M. Taylor, “Non-relativistic holography,” arXiv:0812.0530v1 [hep-th] (2008).

    Google Scholar 

  58. J. Tarrio and S. Vandoren, JHEP, 1109, 017 (2011); arXiv:1105.6335v2 [hep-th] (2011).

    Article  MathSciNet  ADS  Google Scholar 

  59. B. Gouteraux and E. Kiritsis, JHEP, 1112, 036 (2011); arXiv:1107.2116v4 [hep-th] (2011).

    Article  ADS  Google Scholar 

  60. L. Huijse, S. Sachdev, and B. Swingle, Phys. Rev. B, 85, 035121 (2012); arXiv:1112.0573v3 [cond-mat.str-el] (2011).

    Article  ADS  Google Scholar 

  61. X. Dong, S. Harrison, S. Kachru, G. Torroba, and H. Wang, JHEP, 1206, 041 (2012); arXiv:1201.1905v4 [hep-th] (2012).

    Article  ADS  Google Scholar 

  62. P. Bueno, W. Chemissany, P. Meessen, T. Ortin, and C. S. Shahbazi, JHEP, 1301, 189 (2013); arXiv: 1209.4047v1 [hep-th] (2012).

    Article  MathSciNet  ADS  Google Scholar 

  63. B. Goutéraux and E. Kiritsis, JHEP, 1304, 053 (2013); arXiv:1212.2625v3 [hep-th] (2012).

    Article  ADS  Google Scholar 

  64. I. Ya. Aref’eva, “Holographic description of thermalization in heavy ion collisions,” in: Proc. Conf. Quark Confinement and the Hadron Spectrum XI (St. Petersburg, 8–12 September 2014) (to appear).

    Google Scholar 

  65. S. S. Pal, “Anisotropic gravity solutions in AdS/CMT,” arXiv:0901.0599v3 [hep-th] (2009).

    Google Scholar 

  66. S. Kachru, X. Liu, and M. Mulligan, Phys. Rev. D, 78, 106005 (2008); arXiv:0808.1725v2 [hep-th] (2008).

    Article  MathSciNet  ADS  Google Scholar 

  67. G. Camilo, B. Cuadros-Melgar, and E. Abdalla, JHEP, 1502, 103 (2015); arXiv:1412.3878v2 [hep-th] (2014).

    Article  MathSciNet  ADS  Google Scholar 

  68. S. J. Zhang and E. Abdalla, Nucl. Phys. B, 896, 569–586 (2015); arXiv:1503.07700v1 [hep-th] (2015).

    Article  MathSciNet  ADS  Google Scholar 

  69. J. F. Pedraza, Phys. Rev. D, 90, 046010 (2014); arXiv:1405.1724v4 [hep-th] (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Aref’eva.

Additional information

This research was funded by a grant from the Russian Science Foundation (Project No. 14-50-00005).

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 3, pp. 398–417, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’eva, I.Y. Formation time of quark–gluon plasma in heavy-ion collisions in the holographic shock wave model. Theor Math Phys 184, 1239–1255 (2015). https://doi.org/10.1007/s11232-015-0331-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0331-x

Keywords

Navigation