Skip to main content
Log in

High-temperature Higgs potential of the two-doublet model in catastrophe theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the general case of the temperature evolution of the two-doublet Higgs potential of the minimal supersymmetric standard model when vacuum condensates of the Higgs doublets arbitrarily propagate along the equilibrium surface (or along the extremum surface) passing through bifurcation domains. In the framework of catastrophe theory, the two-doublet Higgs potential of the minimal supersymmetric standard model is a special case of a gradient system potential. We obtain nonlinear transformations of the vacuum condensates of this model, which reduce the two-doublet potential to a canonical form, and catastrophe functions of types A3 and A5 corresponding to an electroweak first-order phase transition in the considered model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Phys. Rev. D, 9, 3357–3378 (1974)

    Article  ADS  Google Scholar 

  2. A. D. Linde, Rep. Prog. Phys., 42, 389–437 (1979).

    Article  ADS  Google Scholar 

  3. V. A. Rubakov and M. E. Shaposhnikov, Phys. Usp., 39, 461–502

  4. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang, World Scientific, Singapore (2011).

    Book  Google Scholar 

  5. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B, 716, 1–29 (2012); arXiv:1207.7214v2 [hep-ex] (2012)

    Article  ADS  Google Scholar 

  6. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B, 716, 30–61 (2012); arXiv:1207.7235v2 [hep-ex] (2012).

    Article  ADS  Google Scholar 

  7. E. Boos, V. Bunichev, M. Dubinin, and Y. Kurihara, Phys. Rev. D, 89, 035001 (2014).

    Article  ADS  Google Scholar 

  8. D. Lyth and A. Riotto, Phys. Rep., 314, 1–146 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  9. A. D. Linde, Phys. Lett. B, 108, 389–393 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  10. A. D. Linde, Phys. Lett. B, 129, 177–181 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett., 48, 1220–1223 (1982).

    Article  ADS  Google Scholar 

  12. A. Linde, Phys. Rev. D, 49, 748–754 (1994); arXiv:astro-ph/9307002v3 (1993).

    Article  ADS  Google Scholar 

  13. F. Bezrukov, J. Rubio, and M. Shaposhnikov, “Living beyond the edge: Higgs inflation and vacuum metastability,” arXiv:1412.3811v1 [hep-ph] (2014)

    Google Scholar 

  14. F. Bezrukov and M. Shaposhnikov, Phys. Lett. B, 734, 249–254 (2014); arXiv:1403.6078v2 [hep-ph] (2014)

    Article  ADS  Google Scholar 

  15. F. Bezrukov, Class. Q. Grav., 30, 214001 (2013); arXiv:1307.0708v2 [hep-ph] (2013).

    Article  MathSciNet  ADS  Google Scholar 

  16. L. E. Ibanez and I. Valenzuela, Phys. Lett. B, 736, 226–230 (2014); arXiv:1404.5235v2 [hep-th] (2014)

    Article  ADS  Google Scholar 

  17. S. Kasuya, T. Moroi, and F. Takahashi, Phys. Lett. B, 593, 33–41 (2004); arXiv:hep-ph/0312094v3 (2003).

    Article  ADS  Google Scholar 

  18. M. Carena, G. Nardini, M. Quirós, and C. E. M. Wagner, Nucl. Phys. B, 812, 243–263 (2009); arXiv:0809.3760v3 [hep-ph] (2008)

    Article  MATH  ADS  Google Scholar 

  19. L. Fromme, S. J. Huber, and M. Seniuch, JHEP, 0611, 038 (2006); arXiv:hep-ph/0605242v2 (2006)

    Article  ADS  Google Scholar 

  20. C. Balazs, M. Carena, A. Menon, D. Morrissey, and C. E. M. Wagner, Phys. Rev. D, 71, 075002 (2005)

    Article  ADS  Google Scholar 

  21. S. Kanemura, Y. Okada, and E. Senaha, “Electroweak baryogenesis and quantum corrections to the Higgs potential,” in: Workshop on CP Studies and Non-Standard Higgs Physics (CERN-2006-009, S. Kraml, G. Azuelos, D. Dominici, J. Ellis, G. Grenier, H.,E. Haber, J. S. Lee, D. J. Miller, A. Pilaftsis, and W. Porod, eds.), CERN, Geneva (2006), pp. 41–44; arXiv:hep-ph/0608079v1 (2006)

    Google Scholar 

  22. J. Cline and K. Kainulainen, Nucl. Phys. B, 510, 88–102 (1998); arXiv:hep-ph/9705201v1 (1997)

    Article  ADS  Google Scholar 

  23. G. R. Farrar and M. Losada, Phys. Lett. B, 406, 60–65 (1997); arXiv:hep-ph/9612346v1 (1996)

    Article  ADS  Google Scholar 

  24. P. Arnold and O. Espinosa, Phys. Rev. D, 47, 3546–3579 (1993); Erratum, 50, 6662 (1994)

    Article  ADS  Google Scholar 

  25. A. Brignole, J. R. Espinosa, M. Quirós, and F. Zwirner, Phys. Lett. B, 324, 181–191 (1994); arXiv:hep-ph/9312296v2 (1993)

    Article  ADS  Google Scholar 

  26. G. F. Giudice, Phys. Rev. D, 45, 3177–3182 (1992)

    Article  ADS  Google Scholar 

  27. N. Turok and J. Zadrozny, Nucl. Phys. B, 369, 729–742 (1992)

    Article  ADS  Google Scholar 

  28. A. I. Bochkarev, S. V. Kuzmin, and M. E. Shaposhnikov, Phys. Lett. B, 244, 275–278 (1990).

    Article  ADS  Google Scholar 

  29. E. Akhmetzyanova, M. Dolgopolov, and M. Dubinin, Phys. Rev. D, 71, 075008 (2005); arXiv:hep-ph/0405264v2 (2004)

    Article  ADS  Google Scholar 

  30. E. Akhmetzyanova, M. Dolgopolov, and M. Dubinin, Phys. Atom. Nucl., 70, 1549–1552 (2007).

    Article  ADS  Google Scholar 

  31. M. N. Dubinin and A. V. Semenov, Eur. J. Phys. C, 28, 223–236 (2003); arXiv:hep-ph/0206205v3 (2002)

    Article  ADS  Google Scholar 

  32. F. Boudjema and A. Semenov, Phys. Rev. D, 66, 095007 (2002); arXiv:hep-ph/0201219v1 (2002).

    Article  ADS  Google Scholar 

  33. E. Akhmetzyanova, M. Dolgopolov, and M. Dubinin, “Self-couplings of Higgs bosons in scenarios with mixing of CP-even/CP-odd states,” in: Workshop on CP Studies and Non-Standard Higgs Physics (CERN-2006-009, S. Kraml, G. Azuelos, D. Dominici, J. Ellis, G. Grenier, H. E. Haber, J. S. Lee, D. J. Miller, A. Pilaftsis, and W. Porod, eds.), CERN, Geneva (2006), pp. 133–138; arXiv:hep-ph/0608079v1 (2006).

    Google Scholar 

  34. M. Dolgopolov, M. Dubinin, and E. Rykova, J. Modern Phys., 2, 301–322 (2011); arXiv:0901.0524v3 [hep-ph] (2009); A. O. Borisov, M. V. Dolgopolov, M. N. Dubinin, and E. N. Rykova, Phys. Atom. Nucl., 72, 167–172.

    Article  Google Scholar 

  35. R. Gilmore, Catastrophe Theory for Scientists and Engineers, Dover, New York (1993)

    Google Scholar 

  36. V. I. Arnol’d, Russ. Math. Surveys, 30, 1–75 (1975)

    Article  MATH  ADS  Google Scholar 

  37. R. Thom, Structural Stability and Morphogenesis, Reading, Mass., Benjamin (1975)

    MATH  Google Scholar 

  38. M. Morse, Trans. Am. Math. Soc., 33, 72–91 (1931).

    MathSciNet  Google Scholar 

  39. K. Funakubo, S. Tao, and F. Toyoda, Prog. Theoret. Phys., 109, 415–432 (2003); arXiv:hep-ph/0211238v1 (2002)

    Article  MATH  ADS  Google Scholar 

  40. M. Brhlik, G. J. Good, and G. L. Kane, Phys. Rev. D, 63, 035002 (2001); arXiv:hep-ph/9911243v1 (1999)

    Article  ADS  Google Scholar 

  41. M. Laine and K. Rummukainen, “Higgs sector CP-violation at the electoroweak phase transition,” arXiv:hep-ph/9811369v3 (1998).

    Google Scholar 

  42. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett., 38, 1440–1443 (1977).

    Article  ADS  Google Scholar 

  43. S. Weinberg, Phys. Rev. Lett., 40, 223–226 (1978).

    Article  ADS  Google Scholar 

  44. S. Davidson and H. Haber, Phys. Rev. D, 72, 035004 (2005); arXiv:hep-ph/0504050v5 (2005).

    Article  ADS  Google Scholar 

  45. M. N. Dubinin and E. Yu. Petrova, “Canonical forms of the catastrophe theory for the two-Higgs-doublet model potential,” Preprint No. 2014-3/887 at http://www.sinp.msu.ru/ru/preprints/, SINP MSU, Moscow (2014).

    Google Scholar 

  46. H. Haber and R. Hempfling, Phys. Rev. D, 48, 4280–4309 (1993).

    Article  ADS  Google Scholar 

  47. E. N. Akhmetzyanova, M. V. Dolgopolov, and M. N. Dubinin, Phys. Part. Nucl., 37, 677–734 (2006).

    Article  Google Scholar 

  48. M. Papucci, J. Ruderman, and A. Weiler, JHEP, 1209, 035–078 (2012)

    Article  ADS  Google Scholar 

  49. T. Cherghetta, B. von Harling, and N. Setzer, JHEP, 1107, 011–045 (2011)

    Article  Google Scholar 

  50. N. Craig, D. Green, and A. Katz, JHEP, 1107, 045–076 (2011).

    Article  ADS  Google Scholar 

  51. V. Khachatryan et al. [CMS Collaboration], JHEP, 1410, 160 (2014); arXiv:1408.3316v2 [hep-ex] (2014)

    Article  ADS  Google Scholar 

  52. S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett., 106, 231801 (2011); arXiv:1104.1619v1 [hep-ex] (2011).

    Article  ADS  Google Scholar 

  53. M. Carena, S. Heinemeyer, O. Stal, and G. Weiglein, Eur. Phys. J. C, 73, 2552–2571 (2013).

    Article  ADS  Google Scholar 

  54. S. F. King, M. Muhlleitner, R. Nevzorov, and K. Walz, Nucl. Phys. B, 870, 323–352 (2013).

    Article  MATH  ADS  Google Scholar 

  55. M. E. Shaposhnikov, JETP Lett., 44, 465–468 (1986).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Dubinin.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 2, pp. 315–337, August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, M.N., Petrova, E.Y. High-temperature Higgs potential of the two-doublet model in catastrophe theory. Theor Math Phys 184, 1170–1188 (2015). https://doi.org/10.1007/s11232-015-0325-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0325-8

Keywords

Navigation