Skip to main content
Log in

Describing radiation decay using the instant form of relativistic quantum mechanics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a transition between states with different total angular momentum values, we develop a method for constructing an electromagnetic current operator that satisfies the Lorentz-covariance and current-conservation conditions. Our method is realized in the framework of an instant form of relativistic quantum mechanics using the general method of relativistic parameterization of matrix elements of local operators. We illustrate the method by calculating the radiation decay of a ρ-meson into a pion. In the modified impulse approximation, we obtain an analytic expression for the transition form factor of this process in the form of an integral representation of dispersion type. Results of the numerical calculation agree with the results of calculating the light-front dynamics and with the model of vector meson dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, Rev. Modern Phys., 21, 392–399 (1949).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. H. Leutwyler and J. Stern, Ann. Phys., 112, 94–164 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  3. B. D. Keister and W. N. Polyzou, “Relativistic Hamiltonian dynamics in nuclear and particle physics,” in: Advances in Nuclear Physics (J. W. Negele and E. W. Vogt, eds.), Vol. 20, Plenum, New York (1991), pp. 225–479.

    Google Scholar 

  4. F. Coester, Progr. Part. Nucl. Phys., 29, 1–32 (1992).

    Article  ADS  Google Scholar 

  5. E. Gilman and F. Gross, J. Phys. G, 28, R37–R116 (2002); arXiv:nucl-th/0111015v1 (2001).

    Article  ADS  Google Scholar 

  6. A. F. Krutov and V. E. Troitsky, Phys. Part. Nucl., 40, 136–161 (2009).

    Article  Google Scholar 

  7. W. N. Polyzou, Ch. Elster, W. Glöckle, J. Golak, Y. Huang, H. Kamada, R. Skibiński, and H. Wita-la, Few-Body Systems, 49, 129–147 (2011).

    Article  ADS  Google Scholar 

  8. W. N. Polyzou, Ann. Phys., 193, 367–418 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  9. B. Bakamjian and L. H. Thomas, Phys. Rev., 92, 1300–1310 (1953).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. W. N. Polyzou, Phys. Rev. C, 82, 064001 (2010); arXiv:1008.5222v1 [math-ph] (2010).

    Article  ADS  Google Scholar 

  11. E. P. Biernat and W. Schweiger, Phys. Rev. C, 89, 055205 (2014).

    Article  ADS  Google Scholar 

  12. M. Gómes-Rocha, Phys. Rev. D, 90, 076003 (2014); arXiv:1409.5239v1 [hep-ph] (2014).

    Article  ADS  Google Scholar 

  13. A. F. Krutov and V. E. Troitsky, Theor. Math. Phys., 143, 704–719 (2005).

    Article  MATH  Google Scholar 

  14. A. F. Krutov and V. E. Troitsky, Phys. Rev. C, 65, 045501 (2002); arXiv:hep-ph/0101327v1 (2001).

    Article  ADS  Google Scholar 

  15. A. F. Krutov and V. E. Troitsky, Phys. Rev. C, 68, 018501 (2003); arXiv:hep-ph/0210046v1 (2002).

    Article  ADS  Google Scholar 

  16. V. E. Troitsky and Yu. M. Shirokov, Theor. Math. Phys., 1, 164–170 (1969).

    Article  Google Scholar 

  17. V. V. Anisovich, M. N. Kobrinsky, D. I. Melikhov, and A. V. Sarantsev, Nucl. Phys. A, 544, 747–792 (1992).

    Article  ADS  Google Scholar 

  18. E. V. Balandina, A. F. Krutov, and V. E. Troitsky, Theor. Math. Phys., 103, 381–389 (1995).

    Article  MATH  Google Scholar 

  19. E. V. Balandina, A. F. Krutov, and V. E. Troitsky, J. Phys. G, 22, 1585–1592 (1996).

    Article  ADS  Google Scholar 

  20. A. F. Krutov and V. E. Troitsky, JHEP, 9910, 028 (1999).

    Article  ADS  Google Scholar 

  21. A. F. Krutov and V. E. Troitsky, Eur. Phys. J. C, 20, 71–76 (2001).

    Article  ADS  Google Scholar 

  22. A. F. Krutov and V. E. Troitsky, Theor. Math. Phys., 116, 907–913 (1998).

    Article  MATH  Google Scholar 

  23. A. F. Krutov, M. A. Nefedov, and V. E. Troitsky, Theor. Math. Phys., 174, 331–342 (2013).

    Article  MathSciNet  Google Scholar 

  24. A. F. Krutov, V. E. Troitsky, and N. A. Tsirova, Phys. Rev. C, 80, 055210 (2009); arXiv:0910.3604v2 [nucl-th] (2009).

    Article  ADS  Google Scholar 

  25. S. V. Troitsky and V. E. Troitsky, Phys. Rev. D, 88, 093005 (2013); 91, 033008 (2015); arXiv:1501.02712v2 [hep-ph] (2015).

    Article  ADS  Google Scholar 

  26. A. A. Cheshkov and Yu. M. Shirokov, Soviet Phys. JETP, 17, 1333–1339 (1963).

    MathSciNet  Google Scholar 

  27. V. P. Kozhevnikov, V. E. Troitsky, S. V. Trubnikov, and Yu. M. Shirokov, Theor. Math. Phys., 10, 30–37 (1972).

    Article  Google Scholar 

  28. A. R. Edmonds, “Angular momentum in quantum mechanics,” Preprint No. CERN-55-26, CERN, Geneva (1955).

    Google Scholar 

  29. F. Cardarelli, I. L. Grach, I. M. Narodetskii, G. Salmé, and S. Simula, Phys. Lett. B, 359, 1–7 (1995); arXiv: nucl-th/9509004v2 (1995).

    Article  ADS  Google Scholar 

  30. J. Yu, B.-W. Xiao, and B.-Q. Ma, J. Phys. G, 34, 1845–1860 (2007); arXiv:0706.2018v1 [hep-ph] (2007).

    Article  ADS  Google Scholar 

  31. U. Vogl, M. Lutz, S. Klimt, and W. Weise, Nucl. Phys. A, 516, 469–495 (1990)

    Article  ADS  Google Scholar 

  32. B. Povh and J. Hüfner, Phys. Lett. B, 245, 653–657 (1990)

    Article  ADS  Google Scholar 

  33. S. M. Troshin and N. E. Tyurin, Phys. Rev. D, 49, 4427–4433 (1994).

    Article  ADS  Google Scholar 

  34. S. B. Gerasimov, Phys. Lett. B, 357, 666–670 (1995); “Electromagnetic moments of hadrons and quarks in a hybrid model,” Preprint No. E2-89-837, Joint Inst. Nucl. Res., Dubna (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Krutov.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 2, pp. 290–306, August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutov, A.F., Polezhaev, R.G. & Troitsky, V.E. Describing radiation decay using the instant form of relativistic quantum mechanics. Theor Math Phys 184, 1148–1162 (2015). https://doi.org/10.1007/s11232-015-0323-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0323-x

Keywords

Navigation