Skip to main content
Log in

Mini Review of Poincaré Invariant Quantum Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We review the construction and applications of exactly Poincaré invariant quantum mechanical models of few-degree of freedom systems. We discuss the construction of dynamical representations of the Poincaré group on few-particle Hilbert spaces, the relation to quantum field theory, the formulation of cluster properties, and practical considerations related to the construction of realistic interactions and the solution of the dynamical equations. Selected applications illustrate the utility of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wigner E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149 (1939)

    Article  MathSciNet  Google Scholar 

  2. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Princeton Landmarks in Physics (1980)

  3. Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Dirac P.A.M.: Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bakamjian B., Thomas L.H.: Relativistic particle dynamics. Phys. Rev. 92, 1300 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Coester F.: Scattering theory for relativistic particles. Helv. Phys. Acta 38, 7 (1965)

    MathSciNet  MATH  Google Scholar 

  8. Sokolov S.N.: Theory of relativistic direct interactions. Dokl. Akad. Nauk SSSR 233, 575 (1977)

    MathSciNet  Google Scholar 

  9. Coester F., Polyzou W.N.: Relativistic quantum mechanics of particles with direct interactions. Phys. Rev. D 26, 1348 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  10. Polyzou W.N.: Relativistic two-body models. Ann. Phys. 193, 367 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  11. Polyzou W.N.: Relativistic quantum mechanics—particle production and cluster properties. Phys. Rev. C 68, 015202 (2003)

    Article  ADS  Google Scholar 

  12. Keister B.D., Polyzou W.N.: Relativistic Hamiltonian dynamics in nuclear and particle physics. Adv. Nucl. Phys. 20, 225 (1991)

    Google Scholar 

  13. Bakker B.L.G., Kondratyuk L.A., Terentev M.V.: On the formulation of two-body and three-body relativistic equations employing light-front dynamics. Nucl. Phys. B 158, 497 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  14. Grach I.L., Kondratyuk L.A.: Electromagnetic form-factors of deuteron in relativistic dynamics. Two nucleon and six quark components. Sov. J. Nucl. Phys. 39, 198 (1984)

    Google Scholar 

  15. Chung P.L., Polyzou W.N., Coester F., Keister B.D.: Hamiltonian light front dynamics of elastic electron deuteron scattering. Phys. Rev. C 37, 2000 (1988)

    Article  ADS  Google Scholar 

  16. Chung P.L., Coester F., Polyzou W.N.: Charge form-factors of quark model pions. Phys. Lett. B 205, 545 (1988)

    Article  ADS  Google Scholar 

  17. Cardarelli F., Pace E., Salme G., Simula S.: Nucleon and pion electromagnetic form-factors in a light front constituent quark model. Phys. Lett. B 357, 267 (1995)

    Article  ADS  Google Scholar 

  18. Polyzou W.N., Glöckle W.: Scaling for deuteron structure functions in relativistic light-front models. Phys. Rev. C 53, 3111 (1996)

    Article  ADS  Google Scholar 

  19. Krutov A.F.: Electroweak properties of light mesons in the relativistic model of constituent quarks. Phys. Atom. Nucl. 60, 1305 (1997)

    ADS  Google Scholar 

  20. Allen T.W., Klink W.H., Polyzou W.N.: Comparison of relativistic nucleon-nucleon interactions. Phys. Rev. C 63, 034002 (2001)

    Article  ADS  Google Scholar 

  21. Wagenbrunn R.F., Boffi S., Klink W., Plessas W., Radici M.: Covariant nucleon electromagnetic form factors from the goldstone-boson exchange quark model. Phys. Lett. B 511, 33 (2001)

    Article  ADS  Google Scholar 

  22. Julia-Diaz B., Riska D.O., Coester F.: Baryon form factors of relativistic constituent-quark models. Phys. Rev. C 69, 035212 (2004)

    Article  ADS  Google Scholar 

  23. Sengbusch E., Polyzou W.N.: Pointlike constituent quarks and scattering equivalences. Phys. Rev. C 70, 058201 (2004)

    Article  ADS  Google Scholar 

  24. Coester F., Polyzou W.N.: Charge form factors of quark-model pions. Phys. Rev. C 71, 028202 (2005)

    Article  ADS  Google Scholar 

  25. Huang Y., Polyzou W.N.: Exchange current contributions in null-plane quantum models of elastic electron deuteron scattering. Phys. Rev. C 80, 025503 (2009)

    Article  ADS  Google Scholar 

  26. Arrington J., Coester F., Holt R.J., Lee T.S.H.: Neutron structure functions. J. Phys. G 36, 025005 (2009)

    Article  ADS  Google Scholar 

  27. Desplanques B.: RQM description of the charge form factor of the pion and its asymptotic behavior. Eur. Phys. J. A 42, 219 (2009)

    Article  ADS  Google Scholar 

  28. Glöckle W., Lee T.S.H., Coester F.: Relativistic effects in three-body bound states. Phys. Rev. C 33, 709 (1986)

    Article  ADS  Google Scholar 

  29. Kamada H. et al.: Lorentz boosted nucleon-nucleon T-matrix and the triton binding energy. Mod. Phys. Lett. A 24, 804 (2009)

    Article  ADS  MATH  Google Scholar 

  30. Fuda M.G., Zhang Y.: Light front dynamics of one boson exchange models of the two-nucleon system. Phys. Rev. C 51, 23 (1995)

    Article  ADS  Google Scholar 

  31. Lin T., Elster C., Polyzou W.N., Glöckle W.: First order relativistic three-body scattering. Phys. Rev. C 76, 014010 (2007)

    Article  ADS  Google Scholar 

  32. Lin T., Elster C., Polyzou W.N., Glöckle W.: Relativistic effects in exclusive pd breakup scattering at intermediate energies. Phys. Lett. B 660, 345 (2008)

    Article  ADS  Google Scholar 

  33. Lin T., Elster C., Polyzou W.N., Witała H., Glöckle W.: Poincaré invariant three-body scattering at intermediate energies. Phys. Rev. C 78, 024002 (2008)

    Article  ADS  Google Scholar 

  34. Witała H. et al.: Relativity and the low energy nd Ay puzzle. Phys. Rev. C 77, 034004 (2008)

    Article  ADS  Google Scholar 

  35. Witała H. et al.: Relativistic effects in 3N reactions. Mod. Phys. Lett. A 24, 871 (2009)

    Article  ADS  Google Scholar 

  36. Fuda M.G., Bulut F.: Three-particle model of the pion-nucleon system. Phys. Rev. C 80, 024002 (2009)

    Article  ADS  Google Scholar 

  37. Newton T.D., Wigner E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21, 400 (1949)

    Article  ADS  MATH  Google Scholar 

  38. Melosh H.J.: Quarks: currents and constituents. Phys. Rev. D 9, 1095 (1974)

    Article  ADS  Google Scholar 

  39. Joos H.: On the representation theory of inhomogeneous Lorentz groups as the foundation of quantum mechanical kinematics. Fortschr. Physik 10, 109 (1962)

    Google Scholar 

  40. Moussa, P., Stora, R.: In: Brittin, W.E., Barut, A.O. (eds.) Lectures in Theoretical Physics, vol. VIIA, p. 248. The University of Colorado Press (1965)

  41. Ekstein H.: Equivalent Hamiltonians in scattering theory. Phys. Rev. 117, 1590 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Kato T.: Perturbation Theory for Linear Operators. Spinger-Verlag, Berlin (1966)

    MATH  Google Scholar 

  43. Chandler C., Gibson A.: Invariance principle for modified wave operators. Indiana J. Math. 25, 443 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  44. Baumgärtel H., Wollenberg M.: Mathematical Scattering Theory. Spinger-Verlag, Berlin (1983)

    Google Scholar 

  45. Haag R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112, 669 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Ruelle V.D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta. 35, 147 (1962)

    MathSciNet  MATH  Google Scholar 

  47. Coester F., Pieper S.C., Serduke F.J.D.: Relativistic effects in phenomenological nucleon-nucleon potentials and nuclear matter. Phys. Rev. C 11, 1 (1975)

    Article  ADS  Google Scholar 

  48. Wiringa R.B., Stoks V.G.J., Schiavilla R.: An accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  49. Machleidt R.: The high-precision, charge-dependent Bonn nucleon-nucleon potential (CD-Bonn). Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  50. Keister B.D., Polyzou W.N.: Quantitative relativistic effects in the three-nucleon problem. Phys. Rev. C 73, 014005 (2006)

    Article  ADS  Google Scholar 

  51. Kamada H., Glöckle W.: Realistic two-nucleon potentials for the relativistic two-nucleon Schroedinger equation. Phys. Lett. B 655, 119 (2007)

    Article  ADS  Google Scholar 

  52. Miller G.A., Schwenk A.: Resonant relativistic corrections and the A y problem. Phys. Rev. C 76, 024001 (2007)

    Article  ADS  Google Scholar 

  53. Cub J. et al.: Analyzing power for elasticn-d scattering at 13 MeV. Few-Body Syst. 6, 151 (1989)

    Article  ADS  Google Scholar 

  54. Tornow W. et al.: Convergent theory for effective interaction in nuclei. Phys. Lett. B 257, 273 (1991)

    Article  ADS  Google Scholar 

  55. Fachruddin I., Elster C., Glöckle W.: Nucleon-nucleon scattering in a three dimensional approach. Phys. Rev. C 62, 044002 (2000)

    Article  ADS  Google Scholar 

  56. Liu H., Elster C., Glöckle W.: Three-body scattering at intermediate energies. Phys. Rev. C 72, 054003 (2005)

    Article  ADS  Google Scholar 

  57. Malfliet R.A., Tjon J.A.: Solution of the Faddeev equations for the triton problem using local two-particle interactions. Nucl. Phys. A 127, 161 (1969)

    Article  ADS  Google Scholar 

  58. Punjabi V. et al.: 2H(p,2p)n at 508 MeV: recoil momenta ≤ 200 MeV/c. Phys. Rev. C 38, 2728 (1988)

    Article  ADS  Google Scholar 

  59. Lomon, E.L.: Effect of revised R n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors (2006). arxiv:nucl-th/0609020v2

  60. Budd, H., Bodek, A., Arrington, J.: Modeling quasi-elastic form factors for electron and neutrino scattering (2003). arXiv:hep-ex/0308005v2

  61. Bradford R., Bodek A., Budd H., Arrington J.: Nucl. Phys. Proc. Suppl. 159, 127 (2006)

    Article  ADS  Google Scholar 

  62. Kelly J.J.: Simple parametrization of nucleon form factors. Phys. Rev. C 70(6), 068202 (2004)

    Article  ADS  Google Scholar 

  63. Bijker R., Iachello F.: Reanalysis of the nucleon spacelike and timelike electromagnetic form factors in a two-component model. Phys. Rev. C 69(6), 068201 (2004)

    Article  ADS  Google Scholar 

  64. Riska D.O.: Exchange currents. Phys. Rep. 181, 207 (1989)

    Article  ADS  Google Scholar 

  65. Buchanan C.D., Yearian M.R.: Elastic electron-deuteron scattering and possible meson-exchange effects. Phys. Rev. Lett. 15(7), 303 (1965)

    Article  ADS  Google Scholar 

  66. Elias J.E. et al.: Measurements of elastic electron-deuteron scattering at high momentum transfers. Phys. Rev. 177(5), 2075 (1969)

    Article  ADS  Google Scholar 

  67. Benaksas D., Drickey D., Frèrejacque D.: Deuteron electromagnetic form factors for 3 F −2 < q 2 < 6 F −2. Phys. Rev. 148(4), 1327 (1966)

    Article  ADS  Google Scholar 

  68. Arnold R.G., Chertok B.T., Dally E.B., Grigorian A., Jordan C.L., Schütz W.P., Zdarko R., Martin F., Mecking B.A.: Measurement of the electron-deuteron elastic-scattering cross section in the range 0.8 ≤ q2 ≤ 6 GeV 2. Phys. Rev. Lett. 35(12), 776 (1975)

    Article  ADS  Google Scholar 

  69. Platchkov S. et al.: Deuteron A(Q 2) structure function and the neutron electric form-factor. Nucl. Phys. A 510, 740 (1990)

    Article  ADS  Google Scholar 

  70. Galster S. et al.: Elastic electron-deuteron scattering and the electric neutron form factor at four-momentum transfers 5 fm2 < q2 < 14 fm2. Nucl. Phys. B 32, 221 (1971)

    Article  ADS  Google Scholar 

  71. Cramer R., Renkhoff M., Drees J., Ecker U., Jagoda D., Koseck K., Pingel G.R., Remenschnitter B., Ritterskamp A.: Measurement of the magnetic formfactor of the deuteron for Q/sup 2/=0.5 to 1.3 (GeV/c)/sup 2/ by a coincidence experiment. ZPC 29(4), 513 (1985)

    Article  Google Scholar 

  72. Simon G.G., Schmitt C., Walther V.H.: Elastic electric and magnetic e-d scattering at low momentum transfer. Nuclear Phys. A 364, 285 (1985)

    Article  ADS  Google Scholar 

  73. Abbott D. et al.: Precise measurement of the deuteron elastic structure function A(Q2). Phys. Rev. Lett. 82(7), 1379 (1999)

    Article  ADS  Google Scholar 

  74. Alexa L.C. et al.: Measurements of the deuteron elastic structure function A(Q2) for 0.7 ≤ Q2 ≤ 6.0 (GeV/c)2 at Jefferson laboratory. Phys. Rev. Lett. 82(7), 1374 (1999)

    Article  ADS  Google Scholar 

  75. Berard R.W. et al.: Elastic electron deuteron scattering. Phys. Lett. B 47, 355 (1973)

    Article  ADS  Google Scholar 

  76. Bosted P.E. et al.: Measurements of the deuteron and proton magnetic form factors at large momentum transfers. Phys. Rev. C 42(1), 38 (1990)

    Article  ADS  Google Scholar 

  77. Martin F., Arnold R.G., Chertok B.T., Dally E.B., Grigorian A., Jordan C.L., Schütz W.P., Zdarko R., Mecking B.A.: Measurement of the magnetic structure function of the deuteron at q2 = 1.0 (GeV/c)2. Phys. Rev. Lett. 38(23), 1320 (1977)

    Article  ADS  Google Scholar 

  78. Auffret S. et al.: Magnetic form factor of the deuteron. Phys. Rev. Lett. 54(7), 649 (1985)

    Article  ADS  Google Scholar 

  79. Dmitriev V.F. et al.: First measurement of the asymmetry in electron scattering by a jet target of polarized deuterium atoms. Phys. Lett. B 157, 143 (1985)

    Article  ADS  Google Scholar 

  80. Voitsekhovsky B.B. et al.: Asymmetry in the reaction D(e,eD) at a momentum transfer of 1FM −1 − 1.5FM −1. JETP Lett. 43, 733 (1986)

    ADS  Google Scholar 

  81. Gilman R. et al.: Measurement of tensor analyzing power in electron-deuteron elastic scattering. Phys. Rev. Lett. 65(14), 1733 (1990)

    Article  ADS  Google Scholar 

  82. Schulze M.E. et al.: Measurement of the tensor polarization in electron-deuteron elastic scattering. Phys. Rev. Lett. 52(8), 597 (1984). doi:10.1103/PhysRevLett.52.597

    Article  ADS  Google Scholar 

  83. The I. et al.: Measurement of tensor polarization in elastic electron-deuteron scattering in the momentum-transfer range 3.8 ≤ q ≤ 4.6 fm −1. Phys. Rev. Lett. 67(2), 173 (1991)

    Article  ADS  Google Scholar 

  84. Abbott D. et al.: Measurement of tensor polarization in elastic electron-deuteron scattering at large momentum transfer. Phys. Rev. Lett. 84(22), 5053 (2000)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. N. Polyzou.

Additional information

“Relativistic Description of Two- and Three-Body Systems in Nuclear Physics”, ECT*, October 19–23, 2009.

This work was performed under the auspices of the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-FG02-86ER40286.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyzou, W.N., Elster, C., Glöckle, W. et al. Mini Review of Poincaré Invariant Quantum Theory. Few-Body Syst 49, 129–147 (2011). https://doi.org/10.1007/s00601-010-0149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-010-0149-x

Keywords

Navigation