Skip to main content
Log in

Symmetry orbits of supergravity black holes

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Black-hole solutions of supergravity theories form families that realize the deep nonlinear “duality” symmetries of these theories. They form orbits under the action of these symmetry groups, with extremal (i.e., BPS) solutions at the limits of such orbits. An important technique for analyzing such solution families uses timelike dimensional reduction and exchanges the stationary black-hole problem for a nonlinear sigma-model problem. We characterize families of extremal or BPS solutions by nilpotent orbits under the duality symmetries, based on a trigraded or pentagraded decomposition of the corresponding duality-group algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1988); English transl.: L. D. Faddeev and A. A. Slavnov Gauge Fields: Introduction to Quantum Theory (Frontiers Phys., Vol. 83), Benjamin, Reading, Mass. (1991).

    MATH  Google Scholar 

  2. A. A. Slavnov, Theor. Math. Phys., 10, 99–104 (1972).

    Article  MathSciNet  Google Scholar 

  3. T. D. Bakeyev and A. A. Slavnov, Modern Phys. Lett. A, 11, 1539–1554 (1996); arXiv:hep-th/9601092v1 (1996).

    Article  ADS  Google Scholar 

  4. A. A. Slavnov, Phys. Lett. B, 388, 147–153 (1996); arXiv:hep-th/9512101v1 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. A. Slavnov, Theor. Math. Phys., 148, 1159–1167 (2006); arXiv:hep-th/0604052v1 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. A. Slavnov, Phys. Lett. B, 217, 91–94 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Neugebaur and D. Kramer, Ann. Phys. (Leipzig), 479, 62–71 (1969).

    Article  Google Scholar 

  8. P. Breitenlohner, D. Maison, and G. W. Gibbons, Commun. Math. Phys., 120, 295–333 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. G. Cl’emen and D. Gal’tsov, Phys. Rev. D, 54, 6136–6152 (1996); arXiv:hep-th/9607043v2 (1996); D. V. Gal’tsov and O. A. Rytchkov, Phys. Rev. D, 58, 122001 (1998); arXiv:hep-th/9801160v1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Cremmer and B. Julia, Nucl. Phys. B, 159, 141–212 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. de Wit, A. K. Tollsten, and H. Nicolai, Nucl. Phys. B, 392, 3–38 (1993); arXiv:hep-th/9208074v1 (1992).

    Article  ADS  Google Scholar 

  12. P. Meessen and T. Ortin, Nucl. Phys. B, 749, 291–324 (2006); arXiv:hep-th/0603099v2 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. M. Cvetič and D. Youm, Phys. Rev. D, 53, R584–R588 (1996); arXiv:hep-th/9507090v2 (1995).

    Article  ADS  Google Scholar 

  14. M. Cvetič and A. A. Tseytlin, Phys. Lett. B, 366, 95–103 (1996); arXiv:hep-th/9510097v4 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Eells Jr. and J. H. Sampson, Am. J. Math., 86, 109–160 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Bossard, H. Nicolai, and K. S. Stelle, JHEP, 0907, 003 (2009); arXiv:0902.4438v3 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Bossard, H. Nicolai, and K. S. Stelle, Gen. Rel. Grav., 41, 1367–1379 (2009); arXiv:0809.5218v2 [hep-th] (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. J. Ehlers, “Konstruktion und Charakterisierungen von Lösungen der Einsteinschen Gravitationsgleichungen,” Dissertation, University of Hamburg, Hamburg (1957).

    Google Scholar 

  19. M. Günaydin, G. Sierra, and P. K. Townsend, Phys. Lett. B, 133, 72–76 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Ž. Dokovi’c, Represent. Theory, 5, 17–42 (2001); J. Lie Theory, 10, 491–510 (2000); 11, 381–413 (2001); Asian J. Math., 5, 561–584 (2001).

    Article  MathSciNet  Google Scholar 

  21. E. Cremmer, H. Lü, C. N. Pope, and K. S. Stelle, Nucl. Phys. B, 520, 132–156 (1998); arXiv:hep-th/9707207v2 (1997).

    Article  ADS  MATH  Google Scholar 

  22. G. Bossard and H. Nicolai, Gen. Rel. Grav., 42, 509–537 (2010); arXiv:0906.1987v2 [hep-th] (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. G. Bossard and C. Ruef, Gen. Rel. Grav., 44, 21–66 (2012); arXiv:1106.5806v1 [hep-th] (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Stelle.

Additional information

Dedicated to Andrei Slavnov in honor of his 75th birthday

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 182, No. 1, pp. 158–170, January, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stelle, K.S. Symmetry orbits of supergravity black holes. Theor Math Phys 182, 130–140 (2015). https://doi.org/10.1007/s11232-015-0251-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0251-9

Keywords

Navigation