Skip to main content
Log in

Holographic dual of a conical defect

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a moving conical defect in the pure AdS3 space-time and calculate two-point correlation functions of a corresponding two-dimensional boundary quantum field theory in the geodesic approximation. We show that the presence of the defect leads to a gravitational lensing of geodesics, and this results in a finite number of similar terms in the Green’s function that correspond to winding geodesics in the bulk around the conical singularity. We show that for the quantized deficit angle γ = π/2n, the lensing produces domain wall excitations in the spectrum of the boundary theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Phys. Rept., 323, 183–386 (2000); arXiv:hepth/9905111v3 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, “Gauge/string duality, hot QCD, and heavy ion collisions,” arXiv:1101.0618v2 [hep-th] (2011).

    Google Scholar 

  3. I. Ya. Aref’eva, Phys. Usp., 57, 527–555 (2014).

    Article  Google Scholar 

  4. W. Witczak-Krempa, E. Sorensen, and S. Sachdev, Nature Phys., 10, 361–366 (2014); arXiv:1309.2941v2 [cond-mat.str-el] (2013).

    Article  ADS  Google Scholar 

  5. G. ’t Hooft, Class. Q. Grav., 13, 1023–1039 (1996); arXiv:gr-qc/9601014v1 (1996).

    Article  ADS  MATH  Google Scholar 

  6. S. Deser, R. Jackiw, and G. ’t Hooft, Ann. Phys., 152, 220–235 (1984).

    Article  ADS  Google Scholar 

  7. M. Smolkin and S. N. Solodukhin, “Correlation functions on conical defects,” arXiv:v3 [hep-th] (2014).

    Google Scholar 

  8. V. Balasubramanian and S. F. Ross, Phys. Rev. D, 61, 044007 (2000); arXiv:hep-th/9906226v1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. C. A. B. Bayona, C. N. Ferreira, and V. J. V. Otoya, Class. Q. Grav., 28, 015011 (2011); arXiv:1003.5396v3 [hep-th] (2010).

    Article  ADS  Google Scholar 

  10. I. Ya. Aref’eva, “Colliding hadrons as cosmic membranes and possible signatures of lost momentum,” arXiv:1007.4777v1 [hep-th] (2010).

    Google Scholar 

  11. H.-J. Matschull and M. Welling, Class. Q. Grav., 15, 2981–3030 (1998); arXiv:gr-qc/9708054v2 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. H.-J. Matschull, Class. Q. Grav., 16, 1069–1095 (1999); arXiv:gr-qc/9809087v3 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. S. Holst and H.-J. Matschull, Class. Q. Grav., 16, 3095–3131 (1999); arXiv:gr-qc/9905030v1 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge Monogr. Math. Phys., Vol. 1), Cambridge Univ. Press, Cambridge (1973).

    Book  MATH  Google Scholar 

  15. S. DeDeo and J. R. Gott, Phys. Rev. D, 66, 084020 (2002); Erratum, 67, 069902 (2003); arXiv:gr-qc/0212118v1 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. I. Ya. Aref’eva and I. V. Volovich, Phys. Lett. B, 433, 49–55 (1998); arXiv:hep-th/9804182v2 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  17. V. Balasubramanian, A. Bernamonti, B. Craps, V. Keränen, E. Keski-Vakkuri, B. Müller, L. Thorlacius, and J. Vanhoof, JHEP, 1304, 069 (2013); arXiv:1212.6066v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  18. S. Ryu and T. Takayanagi, JHEP, 0608, 045 (2006); arXiv:hep-th/0605073v3 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Calabrese and J. L. Cardy, J. Stat. Mech., 0406, 002 (2004); arXiv:hep-th/0405152v3 (2004).

    MathSciNet  Google Scholar 

  20. P. Calabrese and J. L. Cardy, J. Stat. Mech., 0504, 010 (2005); arXiv:cond-mat/0503393v1 (2005).

    Google Scholar 

  21. M. Headrick, Phys. Rev. D, 82, 126010 (2010); arXiv:1006.0047v3 [hep-th] (2010).

    Article  ADS  Google Scholar 

  22. J. Abajo-Arrastia, J. Aparicio, and E. L’opez, JHEP, 1011, 149 (2010); arXiv:1006.4090v1 [hep-th] (2010).

    Article  ADS  Google Scholar 

  23. V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf, and S. F. Ross, “Multiboundary wormholes and holographic entanglement,” arXiv:1406.2663v2 [hep-th] (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Arefeva.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 182, No. 1, pp. 3–27, January, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arefeva, I.Y., Bagrov, A.A. Holographic dual of a conical defect. Theor Math Phys 182, 1–22 (2015). https://doi.org/10.1007/s11232-015-0242-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0242-x

Keywords

Navigation