Skip to main content
Log in

Solutions of multidimensional partial differential equations representable as a one-dimensional flow

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose an algorithm for reducing an (M+1)-dimensional nonlinear partial differential equation (PDE) representable in the form of a one-dimensional flow ut + \(w_{x_1 } \) (u, ux uxx,…) = 0 (where w is an arbitrary local function of u and its xi derivatives, i = 1,…, M) to a family of M-dimensional nonlinear PDEs F(u,w) = 0, where F is a general (or particular) solution of a certain second-order two-dimensional nonlinear PDE. In particular, the M-dimensional PDE might turn out to be an ordinary differential equation, which can be integrated in some cases to obtain explicit solutions of the original (M+1)-dimensional equation. Moreover, a spectral parameter can be introduced in the function F, which leads to a linear spectral equation associated with the original equation. We present simplest examples of nonlinear PDEs together with their explicit solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).

    MATH  Google Scholar 

  2. S. P. Tsarev, Sov. Math. Dokl., 31, 488–491 (1985).

    MATH  Google Scholar 

  3. B. A. Dubrovin and S. P. Novikov, Russ. Math. Surveys, 44, 35–124 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. S. P. Tsarev, Math. USSR Izv., 37, 397–419 (1991).

    Article  MathSciNet  Google Scholar 

  5. E. V. Ferapontov, Theor. Math. Phys., 99, 567–570 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Hopf, Commun. Pure Appl. Math., 3, 201–230 (1950).

    Article  MATH  MathSciNet  Google Scholar 

  7. J. D. Cole, Quart. Appl. Math., 9, 225–236 (1951).

    MATH  MathSciNet  Google Scholar 

  8. F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable?” in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin, 1–62 (1991).

    Chapter  Google Scholar 

  9. D. Li and Ya. G. Sinai, “Complex singularities of the Burgers system and renormalization group method,” in: Current Developments in Mathematics, 2006 (D. Jerison, B. Mazur, T. Mrowka, W. Schmid, R. P. Stanley, and S.-T. Yau, eds.), International Press, Somerville, Mass. (2008), pp. 181–210.

    Google Scholar 

  10. D. Li and Ya. G. Sinai, J. Math. Phys., 51, 015205 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  11. C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett., 19, 1095–1097 (1967).

    Article  ADS  Google Scholar 

  12. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevsky, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Plenum, New York (1984).

    Google Scholar 

  13. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering (London Math. Soc. Lect. Note Ser., Vol. 149), Cambridge Univ. Press, Cambridge (1991).

    Book  MATH  Google Scholar 

  14. B. Konopel’chenko, Solitons in Multidimensions: Inverse Spectral Transform Method, World Scientific, Singapore (1993).

    Book  Google Scholar 

  15. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 8, 226–235 (1974).

    Article  MATH  Google Scholar 

  16. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 13, 166–174 (1979).

    MathSciNet  Google Scholar 

  17. A. I. Zenchuk, “Particular solutions to multidimensional PDEs with KdV-type nonlinearity,” arXiv:1304.6864v1 [nlin.SI] (2013).

    Google Scholar 

  18. T. Schäfer and C. E. Wayne, Phys. D, 196, 90–105 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Sakovich and S. Sakovich, J. Phys. Soc. Japan, 74, 239–241 (2005); arXiv:nlin/0409034v1 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Zenchuk.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 178, No. 3, pp. 346–362, March, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenchuk, A.I. Solutions of multidimensional partial differential equations representable as a one-dimensional flow. Theor Math Phys 178, 299–313 (2014). https://doi.org/10.1007/s11232-014-0144-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0144-3

Keywords

Navigation