Skip to main content

Why Are Certain Nonlinear PDEs Both Widely Applicable and Integrable?

  • Chapter
What Is Integrability?

Part of the book series: Springer Series in Nonlinear Dynamics ((SSNONLINEAR))

Summary

Certain “universal” nonlinear evolution PDEs can be obtained, by a limiting procedure involving rescalings and an asymptotic expansion, from very large classes of nonlinear evolution equations. Because this limiting procedure is the correct one to evince weakly nonlinear effects, these universal model equations show up in many applicative contexts. Because this limiting procedure generally preserves integrability, these universal model equations are likely to be integrable, since for this to happen it is sufficient that the very large class from which they are obtainable contain just one integrable equation. The relevance and usefulness of this approach, to understand the integrability of known equations, to test the integrability of new equations and to obtain novel integrable equations likely to be applicable, is tersely discussed. In this context, the heuristic distinction is mentioned among “C-integrable” and “S-integrable” nonlinear PDEs, namely, equations that are linearizable by an appropriate Change of variables, and equations that are integrable via the Spectral transform technique; and several interesting C-integrable equations are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Galileo Galilei: Il Saggiatore, 1623; Opere di Galileo Galilei Vol. VI (Edizione nazionale, Barbèra, Firenze 1890–1909) [see p. 232].

    Google Scholar 

  2. F. Calogero, W. Eckhaus: “Nonlinear Evolution Equations, Rescalings, Model PDEs and Their Integrability. I”, Inverse Problems 3, 229–262 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. F. Calogero, W. Eckhaus: “Nonlinear Evolution Equations, Rescalings, Model PDEs and Their Integrability. II”, Inverse Problems 4, 11–33 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. F. Calogero, W. Eckhaus: “Necessary Conditions for Integrability of Nonlinear PDEs”, Inverse Problems 3, L27–L32 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. F. Calogero, A. Degasperis: Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations. I (North-Holland, Amsterdam 1982).

    Google Scholar 

  6. S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov: Theory of Solitons (Plenum, New York 1984) [Original Russian title: Teoria solitonov].

    MATH  Google Scholar 

  7. Suppl. Progr. Theor. Phys. 55, 1974 (issue devoted to the “Reductive Perturbation Method for Nonlinear Wave Propagation”).

    Google Scholar 

  8. W. Eckhaus: “The Long-Time Behaviour for Perturbed Wave-Equations and Related Problems”, preprint 404, Department of Mathematics, University of Utrecht, December 1985, published in part in Lect. Notes Phys. (Springer, Berlin-Heidelberg-New York 1986).

    Google Scholar 

  9. V. E. Zakharov, E. A. Kuznetsov: “Multiscale Expansion in the Theory of Systems Integrable by the Inverse Scattering Transform”, Physica 18D, 455–463 (1986).

    MathSciNet  ADS  Google Scholar 

  10. F. Calogero, A. Maccari: “Equations of Nonlinear Schrödinger Type in 1 + 1 and 2 + 1 Dimensions, Obtained from Integrable PDEs”, in Inverse Problems: an Interdisciplinary Study (Proceedings of the Meeting on Inverse Problems held in Montpellier, November 1986), ed. by P. C. Sabatier, Advances in Electronics and Electron Physics 19 (Academic, London 1987) 463-480.

    Google Scholar 

  11. F. Calogero: “The Evolution PDE u t = u xxx + 3(u xxx u2 + 3u 2 x u) + 3u x u 4”, J. Math. Phys. 28, 538–555 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. V.V. Sokolov, A.B. Shabat: “Necessary Conditions on Nontrivial Lie-Bäcklund Algebras and Existence of Conservation Laws”, preprint (in Russian), Department of Physics and Mathematics, Bashkirian Section of the Soviet Academy of Sciences, Ufa, 1982.

    Google Scholar 

  13. F. Calogero, S. De Lillo: “The Eckhaus PDE”, Averse Problems 3, 633–681 (1987).

    Article  ADS  Google Scholar 

  14. F. Calogero, S. De Lillo: “On the Eckhaus Equation”, in: Nonlinear Evolutions, Proceedings of the 4th NEEDS Workshop held in Baraluc-les-Bains, June 1987, ed. by J. Leon (World Scientific Singapore 1988) 691–696.

    Google Scholar 

  15. F. Calogero, S. De Lillo: “Cauchy Problems on the Semiline and on a Finite Interval for the Eckhaus Equation”, Inverse Problems 4, L33–L37 (1988).

    Article  ADS  MATH  Google Scholar 

  16. F. Calogero, S. De Lillo: to be published.

    Google Scholar 

  17. F. Calogero, D. Levi, A. Maccari: to be published.

    Google Scholar 

  18. A. V. Mikhailov, A. B. Shabat, R. I. Yamilov: “Extension of the Module of Inverüble Transformations. Classification of Integrable Systems”, Commun. Math. Phys. 115, 1 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  19. A. V. Mikhailov: private communication.

    Google Scholar 

  20. V.E. Zakharov: “The Inverse Scattering Method”, in Solitons, ed. by R.K. Bullough, J.P. Caudrey, Top. Curr. Phys. Vol. 17 (Springer, Berlin-Heidelberg-New York 1980) 243–285.

    Chapter  Google Scholar 

  21. G. Leebert, C. Karney, A. Bers, D. Kaup: “Two-dimensional Self-modulation of Lower Hybrid Waves in Inhomogeneous Plasmas”, Phys. Fluids 22, 1545–1553 (1979).

    Article  ADS  Google Scholar 

  22. B. B. Kadomtsev, B. I. Petviashvili: “On the Stability of Solitary Waves in Weakly Dispersive Media”, Sov. Phys. Dokl. 15, 539–541 (1970) [Russian original: Dokl. Akad. Nauk SSSR 192, 753-756 (1970)].

    ADS  MATH  Google Scholar 

  23. A. Davey, K. Stewartson: “On Three-Dimensional Packets of Surface Waves”, Proc. Roy. Soc. London A 338, 101–110 (1974).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. D. Anker, N. C. Freeman: “On the Soliton-Solutions of the Davey-Stewartson Equation for Long Waves”, Proc. Roy. Soc. London A 360, 529–540 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M. Boiti, J. J.-P. Leon, M. Manna, F. Pempinelli: “On the Spectral Transform of a Kortewegde Vries Equation in Two Spatial Dimensions”, Inverse Problems 2, 271–279 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. E. I. Schulman: “On the Integrability of Equations of Davey-Stewartson type”, Theor. Math. Phys. 56, 720–724 (1983) [Russian original: Teor. Mat Fiz. 56, 131-136 (1983)].

    Article  Google Scholar 

  27. M. Boiti, J.J.-P. Leon, F. Pempinelli: “Integrable Two-Dimensional Generalization of the Sine and Sinn-Gordon Equations”, Inverse Problems 3, 37–49 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  28. L.P. Nizhnik: “Integration of Multidimensional Nonlinear Equations by the Method of the Inverse Problem”, Sov. Phys. Dokl. 25, 706–708 (1980) [Russian original: Dokl. Akad. Nauk SSSR 254, 332-335 (1980)].

    ADS  MATH  Google Scholar 

  29. F. Calogero: “Universality and integrability of the nonlinear PDEs describing N-wave interactions”, J. Math. Phys. 30, 28–40 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. F. Calogero: “Solutions of certain integrable nonlinear PDEs describing nonresonant N-wave interactions”, J. Math. Phys. 30, 639–654 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calogero, F. (1991). Why Are Certain Nonlinear PDEs Both Widely Applicable and Integrable?. In: Zakharov, V.E. (eds) What Is Integrability?. Springer Series in Nonlinear Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88703-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88703-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88705-5

  • Online ISBN: 978-3-642-88703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics