Skip to main content
Log in

Incommensurable state of a spin density wave and superconductivity in quasi-two-dimensional systems with an anisotropic energy spectrum

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate phase transitions in quasi-two-dimensional systems with an anisotropic energy spectrum and a deviation from the half-filling of the energy band (µ ≠ 0). We demonstrate the possibility of the transition of an insulator into a half-metallic state when the nesting condition is violated because the parameter µ ≠ 0 and of taking the umklapp processes into account. We obtain the basic equations for the parameters of the superconducting (Δ) and magnetic (M) orders and determine the conditions for the emergence of superconductivity on the background of a spin-density-wave state and also for the coexistence of superconductivity and magnetism. We show that the transition of a magnetic system into a superconducting state as the parameter µ increases can be a first-order phase transition at low temperatures. We also obtain an expression for the heat capacity jump C S -C N at T = T c , which depends on M and µ and differs essentially from the case of the Bardeen-Cooper-Schrieffer theory. We also consider the transformations related to the density of electron states of the relevant anisotropic system, which can undergo essential changes under pressure or doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Sadovskii, Phys. Usp., 51, 1201–1227 (2008); arXiv:0812.0302v1 [cond-mat.supr-con] (2008).

    Article  ADS  Google Scholar 

  2. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc., 130, 3296–3297 (2008).

    Article  Google Scholar 

  3. K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Japan, 78, 062001 (2009); arXiv:0906.2045v1 [cond-mat.supr-con] (2009).

    Article  ADS  Google Scholar 

  4. X. Zhu, H. Yang, L. Fang, G. Mu, and H.-H. Wen, Supercond. Sci. Technol., 21, 105001 (2008).

    Article  ADS  Google Scholar 

  5. V. A. Moskalenko, M. E. Palistrant, and V. M. Vakalyuk, Sov. Phys. Usp., 34, 717–728 (1991).

    Article  ADS  Google Scholar 

  6. V. A. Moskalenko, L. Z. Kon, and M. E. Palistrant, Low-Temperature Properties of Metals with Singularities of the Band Spectrum [in Russian], Shtiintsa, Kishinev (1989).

    Google Scholar 

  7. V. A. Moscalenko, L. Z. Kon, and M. E. Palistrant, Theory of the Multiband Superconductivity [in Rumanian], Tehnica, Bucharest (2008).

    Google Scholar 

  8. M. E. Palistrant, Condens. Matter Phys., 12, 677–688 (2009).

    Article  Google Scholar 

  9. M. E. Palistrant and L. Z. Kon, Ukrainian J. Phys., 55, 44–54 (2010).

    Google Scholar 

  10. V. Barzykin and L. P. Gor’kov, JETP Letters, 88, 131–135 (2008).

    Article  ADS  Google Scholar 

  11. È. Z. Kuchinskii and M. V. Sadovskii, JETP Letters, 89, 156–160 (2009).

    Article  ADS  Google Scholar 

  12. L. Benfatto, M. Capone, S. Caprara, C. Castellani, and C. Di Castro, arXiv:0807.4408v1 [cond-mat.supr-con] Phys. Rev. B, 78, 140502(R) (2008).

    ADS  Google Scholar 

  13. M. G. Vavilov, A. V. Chubukov, and A. B. Vorontsov, Supercond. Sci. Technol., 23, 054011 (2010); arXiv: 0912.3556v1 [cond-mat.supr-con] (2009).

    Article  ADS  Google Scholar 

  14. E. E. Rodriguez, C. Stock, K. Krycka, C. F. Majkrzak, K. Kirshenbaum, N. P. Butch, S. R. Shanta, J. Paglione, and M. A. Green, Phys. Rev. B, 83, 134438 (2011); arXiv:1012.5311v2 [cond-mat.mtrl-sci] (2010).

    Article  ADS  Google Scholar 

  15. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism [in Russian], Nauka, Moscow (1965); English transl., Plenum, New York (1967).

    Google Scholar 

  16. V. L. Bonch-Bruevich and S. V. Tyablikov, The Green Function Method in Statistical Mechanics [in Russian], Fizmatlit, Moscow (1961); English transl., North-Holland, Amsterdam (1962).

    Google Scholar 

  17. A. B. Vorontsov, M. G. Vavilov, and A. V. Chubukov, Phys. Rev. B, 81, 174538 (2010); arXiv:1003.2389v2 [cond-mat.supr-con] (2010).

    Article  ADS  Google Scholar 

  18. M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, Phys. Rev. Lett., 105, 157001 (2010); arXiv:1009.3787v1 [cond-mat.supr-con] (2010).

    Article  ADS  Google Scholar 

  19. M. C. Leung, Phys. Rev. B, 11, 4272–4277 (1975).

    Article  ADS  Google Scholar 

  20. R. Kh. Timerov, JETP, 45, 1214–1221 (1977).

    ADS  Google Scholar 

  21. M. E. Palistrant and I. V. Pédure, Theor. Math. Phys., 62, 78–83 (1985); 70, 312–320 (1987); M. E. Palistrant and I. V. Pédure, Phys. Lett. A, 111, 445–447 (1983).

    Article  Google Scholar 

  22. M. E. Palistrant and V. M. Vakalyuk, Fiz. Nizk. Temp., 18, 847 (1992).

    Google Scholar 

  23. M. E. Palistrant and F. G. Kochorbé, Izv. AN SSR Moldovy: Fiz. i Tekh., 2, No. 5, 7 (1991).

    Google Scholar 

  24. D. F. Digor and M. E. Palistrant, Moldav. J. Phys. Sci., 9, 311 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Palistrant.

Additional information

Dedicated to the 90th birthday of Professor S. V. Tyablikov

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 168, No. 3, pp. 503–517, September, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palistrant, M.E. Incommensurable state of a spin density wave and superconductivity in quasi-two-dimensional systems with an anisotropic energy spectrum. Theor Math Phys 168, 1290–1302 (2011). https://doi.org/10.1007/s11232-011-0106-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0106-y

Keywords

Navigation