Skip to main content
Log in

Magnetism and superconductivity in a quasi-2D anisotropic system doped with charge carriers

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The theory of multiband superconducting systems with variable density of charge carriers is analyzed. The possibility of emergence of nonphonon high-temperature superconductivity due to the predominance of electron–electron interband interactions over intraband interactions, as well as due to the fact that the thermodynamic and magnetic properties of multiband systems in the superconducting phase differ qualitatively from those of single-band systems, is indicated. Phase transitions in a quasi-2D anisotropic medium upon a change in the carrier concentration, i.e., a transition from the commensurate to the incommensurate state of the spin density wave, are analyzed. Such a transition is observed when the Umklapp processes in the lattice structure are taken into account. These processes facilitate a deviation of wavevector Q of the spin density wave from 2k F , as well as a displacement of the bandgap relative to the Fermi surface. This leads to the generation of free charge carriers and the possibility of superconductivity. It is shown that superconductivity accompanies the magnetism. The conditions for the coexistence of these two phenomena are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, et al., J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. Xiyu Zhu, Huon Vang, Lu Fang, et al., Sci. Technol. 21, 105001 (2008).

    ADS  Google Scholar 

  3. M. V. Sadovskii, Phys. Usp. 51, 1243 (2008).

    Article  Google Scholar 

  4. Ch. Day, Phys. Today 62 (8), 36 (2009).

    Article  Google Scholar 

  5. V. A. Moskalenko, Fiz. Met. Metalloved. 8, 503 (1959).

    Google Scholar 

  6. H. Suhl, B. T. Matthias, and I. R. Walker, Phys. Rev. Lett. 3, 552 (1959).

    Article  ADS  Google Scholar 

  7. V. A. Moskalenko, M. E. Palistrant, and V. M. Vakalyuk, Sov. Phys. Usp. 34, 717 (1991).

    Article  ADS  Google Scholar 

  8. V. A. Moskalenko, L. Z. Kon, and M. E. Palistrant, Low-Temperature Properties of Metals with Band Spectrum Singularities (Shtiintsa, Chisinau, 1989) [in Russian].

    Google Scholar 

  9. V. A. Moscalenco, L. Z. Kon, and M. E. Palistrant, http: wwwtheory/V.Barsan/eboks/Mosc.-2008.

  10. M. E. Palistrant and M. Calalb, The Theory of High- Temperature Superconductivity in Many-Band Systems (ASM, Chisinau, 2007) [in Russian].

    Google Scholar 

  11. M. E. Palistrant, Condens. Matter Phys. 12, 677 (2009), Moldav. J. Phys. Sci. 3, 133 (2004), arXiv: cond-math/0305496.

    Article  Google Scholar 

  12. M. E. Palistrant and L. Z. Kon, Ukr. J. Phys. 55, 44 (2010).

    Google Scholar 

  13. M. E. Palistrant and F. G. Kochorbe, Physica C 194, 351 (1992).

    Article  ADS  Google Scholar 

  14. F. G. Kochorbe and M. E. Palistrant, J. Exp. Theor. Phys. 77, 442 (1993), Theor. Math. Phys. 96, 1083 (1993).

    ADS  Google Scholar 

  15. M. Calalb, F. G. Kochorbe, and M. E. Palistrant, Sov. J. Theor. Math. Phys. 91, 664 (1992).

    Article  Google Scholar 

  16. M. E. Palistrant, Int. J. Mod. Phys. 19, 829 (2005); arXiv: cond-mat/0312302.

    Article  Google Scholar 

  17. O. B. Dolgov, R. K. Kremer, J. Kortus, et al., Phys. Rev. B 72, 024504 (2005).

    Article  ADS  Google Scholar 

  18. E. J. Nicol and J. P. Carbotte, Phys. Rev. B 71, 054501 (2005).

    Article  ADS  Google Scholar 

  19. M. E. Palistrant and V. A. Ursu, J. Exp. Theor. Phys. 104, 51 (2007); J. Supercond. Nov. Mag. 21, 171 (2008).

    Article  ADS  Google Scholar 

  20. M. E. Palistrant, V. A. Ursu, and A. V. Palistrant, Moldav. J. Phys. Sci. 4 (1), 35 (2005).

    Google Scholar 

  21. V. A. Moskalenko, M. E. Palistrant, and V. A. Ursu, Theor. Math. Phys. 154, 94 (2008).

    Article  MathSciNet  Google Scholar 

  22. M. E. Palistrant, I. D. Cebotari, and V. A. Ursu, Moldav. J. Phys. Sci. 7, 292 (2008); J. Exp. Theor. Phys. 109, 227 (2009).

    Google Scholar 

  23. M. E. Palistrant, V. A. Ursu, and M. Calalb, J. Super. Nov. Magn. 27, 1299 (2014).

    Article  Google Scholar 

  24. A. V. Chubukov and P. J. Hirschfeld, arXiv: 1412.7140.

  25. A. A. Kordyuk, arXiv: 1501.4154.

  26. M. E. Palistrant and V. M. Vakalyuk, J. Low Temp. Phys. 18, 597 (1992).

    Google Scholar 

  27. M. E. Palistrant, J. Novel Magn. 55, 44 (2010).

    Google Scholar 

  28. M. E. Palistrant, Theor. Math. Phys. 168, 1290 (2011).

    Article  MathSciNet  Google Scholar 

  29. M. E. Palistrant and V. A. Ursu, J. Exp. Theor. Phys. 116, 641 (2013).

    Article  ADS  Google Scholar 

  30. M. E. Palistrant, F. T. Kochorbe, Izv. AN Moldovy, Ser. Fiz. Tekh. 2 (5), 7 (1991).

    Google Scholar 

  31. D. F. Digor and M. E. Palistrant, Moldav. J. Phys. Sci. 9, 304 (2011).

    Google Scholar 

  32. M. E. Palistrant and I. V. Pedure, Sov. J. Theor. Math. Phys. 62, 78 (1985); Sov. J. Theor. Math. Phys. 70, 312 (1987).

    Article  Google Scholar 

  33. M. S. Liung, Phys. Rev. B 11, 4272 (1975).

    Article  ADS  Google Scholar 

  34. R. K. Timerov, Sov. Phys. JETP 45, 1214 (1977).

    ADS  Google Scholar 

  35. A. E. Leggett, Progr. Theor. Phys. 36, 901 (1966).

    Article  ADS  Google Scholar 

  36. M. E. Palistrant, Physica C 235, 240 (1994).

    Google Scholar 

  37. M. E. Palistrant, Theor. Math. Phys. 95, 432 (1993), Theor. Math. Phys. 103, 583 (1995).

    Article  Google Scholar 

  38. M. E. Palistrant and M. Calalb, Theor. Math. Phys. 110, 129 (1997).

    Article  Google Scholar 

  39. F. G. Kochorbe and M. E. Palistrant, Physica C 298, 217 (1998).

    Article  ADS  Google Scholar 

  40. M. E. Palistrant and F. G. Kochorbe, J. Exp. Theor. Phys. 87, 570 (1998).

    Article  ADS  Google Scholar 

  41. A. B. Vorontsov, M. G. Vavilov, and A. V. Chubukov, Phys. Rev. B 81, 174538 (2010), arXiv: 1003.2389.

    Article  ADS  Google Scholar 

  42. D. Kuzmanoski, A. Levchenko, M. Khodas, and M. G. Vavilov, Phys. Rev. B 89, 144503 (2014); arXiv: 1401.1118.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Palistrant.

Additional information

Original Russian Text © M.E. Palistrant, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 1, pp. 97–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palistrant, M.E. Magnetism and superconductivity in a quasi-2D anisotropic system doped with charge carriers. J. Exp. Theor. Phys. 123, 86–97 (2016). https://doi.org/10.1134/S1063776116050198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116050198

Navigation